Reg. No \qquad
Name
24P2004

M. Sc. DEGREE END SEMESTER EXAMINATION - MARCH 2024 SEMESTER 2 - PHYSICS

COURSE : 21P2PHYT05 - MATHEMATICAL METHODS IN PHYSICS II

(For Regular 2023 Admission and Improvement/Supplementary 2022/2021 Admissions)
Duration : Three Hours
Max. Weights: 30

PART A

Answer any 8 questions

Weight: 1

1. Write the expression for gamma function.
2. Find the point (x, y) at which the function $f(z)=|z|^{2}$ is analytic.
3. Find the Laplace transform of $3 t^{2}+5$.
4. Differentiate between Fourier series and Fourier transform.
5. Find the solution of one dimensional Laplace equation in Cartesian coordinates.
6. Describe nonlinear PDEs
($\mathrm{A}, \mathrm{CO} 4$)
7. What are harmonic functions?
8. What is an essential singularity? Give an example.

PART B
Answer any 6 questions

Weights: 2

11. Explain the different types of singularities with examples.
12. Obtain the relation $\left(1-2 x z+z^{2}\right)^{-1 / 2}=\sum_{n=0}^{\infty} z^{n} P_{n}(x)$.
13. Show that a homogeneous equation with a nonhomogeneous boundary conditions is same as a nonhomogeneous equation with homogeneous boundary conditions.
14. Show that Green's function is symmetric with respect to its two variables.
(A, CO 4)
15. Derive the conditions for a complex function to be analytic.
16. State and prove the convolution theorem of Laplace transforms.
(A, CO 1)
(A, CO 2)
17. Prove that the Fourier transform of a Gaussian is a Gaussian.
(A, CO 2)
18. Show the transformation of gamma function.

PART C

Answer any 2 questions
Weights: 5
19. Obtain the general solution of Hermite differential equation. Also obtain the Hermite polynomials of order zero, one and two.
20. Find the Fourier transform of (i) $e^{-|t|}$ and (ii) $e^{-a^{2} x^{2}}$; a >0
21. Transform the Laplace's equation into spherical polar coordinates and hence solve it to obtain the expressions for spherical harmonics.
(A, CO 4)
22. Show that $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)\left(x^{2}+9\right)}=\frac{\pi}{24}$.

OBE: Questions to Course Outcome Mapping

CO	Course Outcome Description	CL	Questions	Total Wt.
CO 1Apply methods of functions of complex variables for calculations of integrals	A	4,15	3	
CO 2	Understand the concepts of Laplace and Fourier transforms.	U	$2,16,17,20$	10
CO 4	Apply partial differential equations to solve problems.	A	$7,8,13,14$, 21	11

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;

