Reg. No

Name

24P2003

M. Sc. DEGREE END SEMESTER EXAMINATION - MARCH 2024

SEMESTER 2 - MATHEMATICS

COURSE : 21P2MATT06 - BASIC TOPOLOGY

(For Regular 2023 Admission and Improvement/Supplementary 2022/2021 Admissions)

Duration : Three Hours

Max. Weights: 30

	PART A					
	Answer any 8 questions	Weight: 1				
1.	Let X be a connected space. Show that only clopen subsets of X are X and $\phi.$	(A, CO 3)				
2.	Does unioin of any two topologies form a topology? Justify.	(R, CO 1)				
3.	Let $f:X o Y$ be a continuous surjection, then if X is connected so is $Y.$	(U, CO 3)				
4.	Prove that a constant function is always continuous.	(U, CO 2)				
5.	Distinguish between absolute property and relative property. Give an example to each.	(U <i>,</i> CO 2)				
6.	Let X be an infinite set where the closed sets are finite sets. Is X Hausdorff ?	(U, CO 4)				
7.	Give an example of a topological space which is T_1 but not $T_2.$	(R, CO 4)				
8.	Define i^{th} projection and its subbase.	(R, CO 2)				
9.	Define a metrisable space. Give an example of a space which is not metrisable.	(U, CO 1)				
10.	Prove that in a discrete space if a sequence is convergent then it will be an eventually constant sequence.	(R, CO 1)				
		(1 x 8 = 8)				
	PART B					
	Answer any 6 questions	Weights: 2				
11.	Prove that every compact Hausdorff space is $T_3.$	(R <i>,</i> CO 4)				
12.	Let $ au_1$ and $ au_2$ be topologies on a set X and $Y\subset X.$ If $ au_1$ is stronger than $ au_2$, prove that $ au_1/Y$ is stronger than $ au_2/Y.$	(R, CO 1)				
13.	Prove that if a subset of ${\mathscr R}$ is not an interval then it is not connected.	(U, CO 3)				
14.	Prove that product topology is the weak topology determined by the projection functions.	(U, CO 2)				
15.	Prove that the topological product of two connected space is connected.	(U, CO 3)				
16.	Show that every open surjective map is a quotient map.	(R, CO 2)				
17.	Define metric topology. Prove that every metric space is a topological space, where the topology is metric topology.	(R, CO 1)				
18.	Prove that every compact Hausdorff space is $T_4.$	(U, CO 4) (2 x 6 = 12)				
PART C						
	Answer any 2 questions	Weights: 5				
19.	Let $[(X_i, \mathscr{T}_i), i = 1, 2,, n]$ be a collection of topological spaces and (X, \mathscr{T}) their topological product. Prove that each projection π_i is continuous. Also show that if Z is any space then the fuction $f: Z \to X$ is continuous if and only if $\pi_i of: Z \to X_i$ is continuous for all $i = 1, 2,, n$.	(U, CO 2)				

20.	Define T_4 and prove that all metric spaces are $T_4.$	(U, CO 4)
21.	Define boundary, closure and interior of a set. Prove that ${\mathscr R}$ under usual metric forms a topological space.	(A, CO 1)
22.	State and prove equivalent condition for locally connected space.	(U, CO 3) (5 x 2 = 10)

OBE: Questions to Course Outcome Mapping

CO	Course Outcome Description	CL	Questions	Total Wt.
CO 1	Classify and compare different topological spaces	U	2, 9, 10, 12, 17, 21	12
CO 2	Continuous functions and Quotient map	U	4, 5, 8, 14, 16, 19	12
CO 3	Connectedness	U	1, 3, 13, 15, 22	11
CO 4	Separation Axiom	U	6, 7, 11, 18, 20	11

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;