Reg. No	Name	24U662

B. Sc. DEGREE END SEMESTER EXAMINATION - MARCH 2024

SEMESTER: 6 – STATISTICS FOR COMPUTER APPLICATION

COURSE: 19U6CRCST07 - COMPUTER AIDED DATA ANALYSIS USING EXCEL AND R

(For Regular 2021 Admission and Supplementary 2020/2019 Admissions)

Time: Three Hours Max. Marks: 75

PART A

(Each question carries 5 marks, maximum marks from this part is 25)

- 1. How can we import a CSV file into R and create a data frame?
- 2. How can we create a scatter plot and bar chart in Excel to visualize the relationship between two variables.
- 3. Write a function in R to get all prime numbers up to a given number.
- 4. Explain how to interpret the correlation coefficient and its significance in Excel.
- 5. How can we perform a Two sample t test for means in Excel.
- 6. Explain the differences between vectors, matrices and data frame in R.
- 7. What are the potential limitations of using Excel for statistical analysis?
- 8. Describe different kinds of data objects/ structures and their operations in R.

PART B (Each question carries 10 marks, maximum marks from this part is 50)

9. The following data were collected on 15 obese girls:

Weight in Kg (Y)	Lean Body Weight (X1)	Mean Daily Caloric Intake (X2)
79.2	54.3	2670
64.0	44.3	820
67.0	47.8	1210
78.4	53.9	2678
66.0	47.5	1205
63.0	43.0	815
65.9	47.1	1200
63.1	44.0	1180
73.2	44.1	1850
66.5	48.3	1260
61.9	43.5	1170
72.5	43.3	1852
101.1	66.4	1790
66.2	47.5	1250
99.9	66.1	1789

Find the multiple correlation coefficient and test it for significance using MS Excel.

10. The following are the pulmonary blood flow (PBF) and pulmonary blood volume (PBV) values recorded for 16 infants and children with congenital heart disease.

X	Y
168	4.31
280	3.4
391	6.2
420	17.3
303	12.3
429	13.99
605	8.73
522	8.9
224	5.87
291	5.0
233	3.51
370	4.24
531	19.41
516	16.61
211	7.21
439	11.6

Find the regression equation describing the linear relationship between the two variables. Compute r^2 and adjusted r^2 using R program.

11. A concurrent cohort study was carried out to measure the effect of birth weight on the subsequent growth of children. 300 children with birth weight 2 Kg to 2.5 Kg were followed till age one, when anthropometric measurements were made to assess the nutritional status. A similar number of children born during the same period with birth weight greater than 2.5 Kg also followed up and data is given below:

Туре	Low Birth Weight	Normal Birth Weight
No. of children studied	300	300
No. of malnourished at age one	120	60

No. of malnourished at age one 120 60 Carry out a χ^2 test to assess the difference in malnourishment between two groups of children using an R program.

12. (a) Distribution of blood groups of students in a university are given below. Construct piechart for males and females using R functions.

Blood Group	Male	Female
А	427	317
В	559	412
0	521	367
AB	122	85

(b) The systolic blood pressure (in mm mercury) of a sample of 100 individuals from the Honolulu Hear study population of 7683 persons were given below. Construct a Histogram using R program.

102	116	118	118	104	118	114	116	122	156
138	152	134	138	112	128	114	154	94	132
190	134	178	134	140	116	98	126	122	140
122	132	134	108	102	134	128	140	172	150
128	130	162	96	142	108	130	122	100	130
112	118	162	142	146	134	122	154	150	118
128	136	120	122	92	124	112	140	154	162
116	108	98	146	112	124	106	120	170	128
134	108	141	126	152	114	128	140	140	130
101	128	118	176	116	154	128	114	144	208

13. A manufacturing company produces three different types of widgets: Type A, Type B and Type C. The company is concerned about the consistency of the diameters of these widgets across different production runs. To investigate this, the company takes a random sample of 10 widgets from each type and measures their diameters. The diameters (in millimetres) are as follows:

Type A: 12.1, 11.9, 12.0, 11.8, 12.2, 12.8, 12.5, 12.2, 12.1, 12.6

Type B: 11.8, 11.7, 11.9, 12.0, 11.5, 11.6, 11.2, 11.9, 11.3, 12.0

Type C: 12.0, 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9

Using the provided data, conduct an F- test for equality of variances at a significance level of 0.05 (using MS Excel).

14. Suppose you are interested in comparing the average monthly electricity bills of two different types of households: households with solar panels installed (Group A) and households without solar panels (Group B).

Group A (Households with solar panels):

Monthly electric bills (in dollars): \$120, \$110, \$115, \$125, \$130, \$132

Group B (Households without solar panels):

Monthly electricity bills (in dollars): \$150, \$160, \$155, \$165, \$170, \$178

Using the provided data, conduct a two-sample Z-test for the mean to determine whether there is a significant difference between the average monthly electricity bills of households with and without solar panels. Assume a significance level of 0.05 (using MS Excel).

15. (a) The heights of 10 students are given. Write R program to obtain the mean and median for the following data.

(b) The weights of 10 persons are given below. Write R program to find the SD and Variance for the given data.

(c) Draw a bar chart using Excel for the data given below:

Country	Production of rice in 2017- 18(in metric tons)
China	149
India	113
Indonesia	37
Bangladesh	33
Vietnam	28
Thailand	20

16. We are conducting a study to analyse the effectiveness of a new teaching method designed to improve students' math skills. The study involves comparing the performance of students befor and after the implementation of the new teaching method. You have collected data from two groups: Group A (students who underwent the new teaching method) and Group B (students who received traditional teaching)

Group A (New Teaching Method):

Before: 80, 85, 78, 82, 79

After: 85, 88, 82, 87, 84

Group B (Traditional Teaching):

Before: 75, 78, 72, 77, 74

After: 78, 80, 75, 79, 76

- (a) Conduct a one-sample t-test to determine if there is a significant improvement in the math scores of students in Group A after undergoing the new teaching method. Use a significance level of 0.05 (using R software).
- (b) Perform a two-sample t-test to compare the mean math scores between Group A and Group B after the teaching interventions. Use a significance level of 0.05 (using R software).
