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PART A
Answer any 10 (2 marks each)

1. Write the formula for half range Fourier cosine series of a func�on defined in the
interval 

2. Write the formula for Fourier serier of a func�on with period defined in the interval

3. Define periodic func�ons. Check whether the func�on  is periodic.

4. Define Laplace transform and find the Laplace transform of , n is an integer.

5. Find the Laplace transform of 

6. Find the Laplace transform of .

7. Give an example of a metric on  other than the usual metric.

8. Any metric space has two open subsets. True or False. Jus�fy.

9. Define a metric space.

10. Give an example of a func�on which is con�nuous but not uniformly con�nuous on (a) 
(b) .

11. Define a Cauchy sequence. Give example.

12. Limit of a sequence is also a limit point of the set of points of the sequence. True or false.
Jus�fy.

PART B
Answer any 5 (5 marks each)

13. Find the Fourier series of   and hence show

that

14. Expand   as a Fourier series in the interval 

15. Find the inverse Laplace transform of  .

16. Find the inverse Laplace transform of  .

17. Let  be a metric space and  be a subset of . Prove that Int( ) is an open subset of 
which contains every open subset of .

18. Let X be a metric space and let  be a subset of . Prove that 

1)  is closed 

2)  equals the intersec�on of all closed supersets of .

19. Let  be a complete metric space and  be a closed subspace of , then prove that  is
complete.

20. Let  and  be metric spaces and a mapping of  into . Prove that if   is con�nuous
at , then  .
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PART C
Answer any 3 (10 marks each)

21. Find the half range Fourier sine and cosine series of the

func�on 

22. a) Solve 

b) Evaluate 

23. Let  be a metric space. Prove that
1) Each open sphere is an open set
2) A  subset  of  is open  it is a union of open spheres.

24. (a) When do we say that a set is nowhere dense?
(b) State and prove the Baire's theorem.
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