B. Sc. DEGREE END SEMESTER EXAMINATION - MARCH 2024
 SEMESTER 6 : COMPUTER APPLICATION COURSE : 19U6CRCMTO7-GRAPH THEORY AND NUMERICAL ANALYSIS
 (For Regular 2021 Admission and Supplementary 2020/2019 Admissions)

Time : Three Hours
Max. Marks: 75
PART A

Answer any 10 (2 marks each)

1. Let $G=(V, E)$ be a graph such that $n(E)=8$ and deg $(v)=2$ for all $v \in V$, then find the number of vertices of G.
2. Draw a graph that has both an Euler Tour and Euler Trail?
3. Define graph isomorphism.
4. Using Gauss elimination method, solve $6 x-y-z=19 ; 3 x+4 y+z=26 ; x+2 y+6 z=22$.
5. Find a negative root of the equation $x^{3}-4 x+9=0$, correct to 2 decimals using bisection method.
6. Define a complete graph. Draw K_{5}.
7. Differentiate between Perfect matching and Maximum matching in a graph G with an example.
8. Find graphically the real root of the equation $x^{3}-6 x-13=0$.
9. Prove that every $u-v$ walk contains a u-v path.
10. Give an example of a graph which has a Hamiltonian path but no Hamiltonian cycle.
11. Is a maximum matching a perfect matching? Justify.
12.

By the method of triangularisation, decompose the matrix $\mathrm{A}=\left[\begin{array}{ccc}2 & -3 & 10 \\ -1 & 4 & 2 \\ 5 & 2 & 1\end{array}\right]$ into $[L][U]$ form.
$(2 \times 10=20)$
PART B

Answer any 5 (5 marks each)

13. If T is a tree with n vertices then prove that it has precisely $\mathrm{n}-1$ edges.
14. Prove that a connected graph G with n vertices has atleast $n-1$ edges.
15. Solve the system of linear equations $3 x+4 y-z=8,-2 x+y+z=3, x+2 y-z=2$ using Gauss-Jordan method.
16. Find by iterative method, a real root of $2 x-\log _{10} x=7$.correct to 3 decimal places.
17. Using iteration method, solve the equation $x^{3}+x^{2}-1=0$ on the interval [0, 1] with an accuracy of 10^{-3}.
18. Solve the following system, by the method of triangularisation:
$2 x-3 y+10 z=3,-x+4 y+2 z=20,5 x+2 y+z=-12$.
19. Prove that a connected graph G has an Euler trail if and only if it has at most two odd vertices.
20. If G is a graph in which degree of every vertex is atleast two, then prove that G contains a cycle.
($5 \times 5=25$)

PART C

Answer any 3 (10 marks each)

21. Prove that a connected graph G is Euler if and only if the degree of every vertex is even.
22. If e is an edge of a graph G and if G-e is the subgraph obtained by deleting e from G then prove that $\omega(\mathrm{G}) \leq \omega(\mathrm{G}-\mathrm{e}) \leq \omega(\mathrm{G})+1$.
23. Find all roots of the equation $x^{3}-2 x^{2}-5 x+6=0$ by Graeffe's method squaring thrice.
24. Using Gauss-Seidel iteration method, solve the system of equations
$10 x+7 y+8 z+7 w=32 ; 7 x+5 y+6 z+5 w=23 ; 8 x+6 y+10 z+9 w=33 ; 7 x+5 y+9 z+10 w=31$.
$(10 \times 3=30)$
