\qquad

B. Sc. DEGREE END SEMESTER EXAMINATION - MARCH 2024 SEMESTER 6 - MATHEMATICS
 COURSE : 19U6CRMAT11 - LINEAR ALGEBRA AND GRAPH THEORY
 (For Regular 2021 Admission and Supplementary 2020/2019 Admissions)

Time : Three Hours
Max. Marks: 75

PART A

Answer any 10 (2 marks each)

1. Define linearly dependent and linearly independent set of vectors in a vectorspace.
2. Determine whether the transformation $\mathbf{T}: \mathbf{V} \rightarrow \mathbf{W}$ defined by $T(v)=0$ for all vectors \mathbf{v} in \mathbf{V} is linear.
3. State and prove first theorem on graph theory.
4. Explain the travelling salesman's problem.
5. Draw the graph whose adjacency matrix is
$\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & 2 & 0\end{array}\right]$
6. Determine whether $u=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$ is a linear combination of $v_{1}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right], v_{2}=\left[\begin{array}{lll}2 & 4 & 0\end{array}\right]$, and $v_{3}=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$
7. Determine whether the transformation $\mathbf{T}: \mathbf{V} \rightarrow \mathbf{V}$ defined by $T(v)=k v$ for all vectors v in \mathbf{V} and any scalar k, is linear.
8. Expain the Chinese postman problem.
9. Prove that for any vector space V , the subset containing only the zero vector is a subspace.
10. Let $\mathbf{T}: \mathbf{R}^{\mathbf{2}} \rightarrow \mathbf{R}^{\mathbf{2}}$ is defined by $T\left[\begin{array}{ll}a & b\end{array}\right]=\left[\begin{array}{cc}a+2 & b-2\end{array}\right]$. Find
a) $\mathrm{T}\left[\begin{array}{ll}2 & 3\end{array}\right]$
b) $\mathrm{T}\left[\begin{array}{cc}-1 & 5\end{array}\right]$
c) T [$\left.\begin{array}{ll}-8 & 200\end{array}\right]$
d) $\mathrm{T}\left[\begin{array}{ll}0 & -7\end{array}\right]$
11. Define underlying simple graph with any example.
12. Define a Hamiltonian cycle and a Hamiltonian graph.

PART B

Answer any 5 (5 marks each)
13. Determine whether the transformation L is linear if $L: P_{3} \rightarrow P_{2}$ is defined by $L\left(a_{3} t^{3}+a_{2} t^{2}+\right.$ $\left.a_{1} t+a_{0}\right)=3 a_{3} t^{2}+2 a_{2} t+a_{1}$ where $a_{i}(i=0,1,2,3)$ denotes real number.
14. Let G be a simple graph with n vertices and let \bar{G} be its complement.
(a) Prove that, for each vertex v in $G, d_{G}(v)+d_{\bar{G}}(v)=n-1$.
(b) Suppose that G has exactly one even vertex. How many odd vertices does \bar{G} have?
15. Find the matrix representation with respect to the standard basis in $\mathbf{R}^{\mathbf{2}}$ and the basis D $=\left\{t^{2}+1, t+1, t-1\right\}$ in P^{2} for the linear transformation $T: \mathbf{R}^{\mathbf{2}} \rightarrow P_{\mathbf{2}}$ defined by
$\boldsymbol{T}\left[\begin{array}{l}a \\ b\end{array}\right]=(4 a+b) t^{2}+(3 a) t+(2 a-b)$
16. Prove that a simple graph G is Hamiltonian if and only if its closure $c(G)$ is Hamiltonian
17. Determine whether the set of two-dimensional column matrices with all components real and equal is a vector space under regular addition but with scalar multiplication defined as

$$
\alpha \odot\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
-\alpha a \\
-\alpha b
\end{array}\right]
$$

18. a)Prove that it is imppossible to have group of nine people such that each one knows exactly five others in the group
b) Draw a graph which is not Euler but having an Euler trail
19. Write down the adjacency matrix and the incidence matrix for the graph

(b)
20. Determine whether the set

$$
\mathbb{D}=\left\{\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\right\}
$$

is a basis for $\mathbf{M}_{\mathbf{2 \times 2}}$
PART C
Answer any 3 (10 marks each)
21. Let G be a graph with n vertices. Then prove that the following statements are equivalent
(a) G is a tree
(b) G is acyclic graph with $n-1$ edges
(c) G is a connected graph with $n-1$ edges
22. State and prove Dirac theorem
23. Prove that for any linear transformation T from an n-dimensional vector space V to W , sum of rank of T and nullity of T is n , the dimension of the domain.
24. Find a basis for the span of the vectors in

$$
\mathbb{C}=\left\{t^{3}+3 t^{2}, 2 t^{3}+2 t-2, t^{3}-6 t^{2}+3 t-3,3 t^{2}-t+1\right\}
$$

