1 of 2(Sacred Heart College (Autonomous) Thevara)

Reg. No

M. Sc. DEGREE END SEMESTER EXAMINATION : MARCH 2024

SEMESTER 4 - MATHEMATICS

COURSE : 21P4MATTEL17 - DIFFERENTIAL GEOMETRY

(For Regular - 2022 Admission and Supplementary - 2021 Admission)

Duration : Three Hours

PART A					
	Answer any 8 questions	Weight: 1			
1.	Prove that the geodesics have constant speed.	(A, CO 2)			
2.	Define Gauss - Kronecker curvature.	(U, CO 4)			
3.	Give Frenet formula for a plane curve.	(A, CO 3)			
4.	Define the height of a level set.	(A, CO 1)			
5.	Sketch the vector field on $\mathbb{R}^2: \mathbb{X}(p) = (p,X(p))$ where $X(x_1,x_2) = (-x_1,-x_2).$	(A, CO 1)			
6.	Describe the level sets of $\ f(x_1,x_2,x_3)=x_1^2-x_2^2+x_3$, for $n=0,1,2.$	(U, CO 1)			
7.	Let f and g be two smooth functions on the open set $J \subset R^{n+1}$ show that $d(f+g) = df + dg.$	(A, CO 3)			
8.	Find the velocity, the acceleration, and the speed of parametrized curve $lpha(t)=(t,t^2)$	(A, CO 2)			
9.	Show that parallel vector fields form vector space.	(U)			
10.	Explain the first and the second fundamental form of a surface $S.$	(An, CO 4)			
		(1 x 8 = 8)			
	PART B Answer any 6 questions	Weights: 2			
11	Distinguish between Euclidean parallelism and Levi-Civita parallelism	(11 CO 2)			
11. 12.	Distinguish between Euclidean parallelism and Levi-Civita parallelism. Let S be an n-surface in \mathbb{R}^{n+1} oriented by the unit normal vector field \mathbb{N}	(U, CO 2)			
11. 12.	Let S be an n -surface in \mathbb{R}^{n+1} , oriented by the unit normal vector field $\mathbb{N}.$				
		(U, CO 2) (A, CO 3)			
	Let S be an n -surface in \mathbb{R}^{n+1} , oriented by the unit normal vector field \mathbb{N} . Let $p \in S$ and $v \in S_p$. Prove that for every parametrized curve $\alpha: I \to S$, with $\dot{\alpha}(t_0) = v$ for some $t_0 \in I$, $\ddot{\alpha}(t_0) \cdot \mathbb{N}(p) = L_P(v) \cdot v$. Let S be an oriented n -surface in \mathbb{R}^{n+1} , let $p \in S$, and let $\{k_1(p), \ldots, k_n(p)\}$ be the principal curvatures of S at p with				
12.	Let S be an n -surface in \mathbb{R}^{n+1} , oriented by the unit normal vector field \mathbb{N} . Let $p \in S$ and $v \in S_p$. Prove that for every parametrized curve $\alpha : I \to S$, with $\dot{\alpha}(t_0) = v$ for some $t_0 \in I$, $\ddot{\alpha}(t_0) \cdot \mathbb{N}(p) = L_P(v) \cdot v$. Let S be an oriented n -surface in \mathbb{R}^{n+1} , let $p \in S$, and let $\{k_1(p), \ldots, k_n(p)\}$ be the principal curvatures of S at p with corresponding orthogonal principal curvature directions $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$.	(A, CO 3)			
12.	Let S be an n -surface in \mathbb{R}^{n+1} , oriented by the unit normal vector field \mathbb{N} . Let $p \in S$ and $v \in S_p$. Prove that for every parametrized curve $\alpha : I \to S$, with $\dot{\alpha}(t_0) = v$ for some $t_0 \in I$, $\ddot{\alpha}(t_0) \cdot \mathbb{N}(p) = L_P(v) \cdot v$. Let S be an oriented n -surface in \mathbb{R}^{n+1} , let $p \in S$, and let $\{k_1(p), \ldots, k_n(p)\}$ be the principal curvatures of S at p with corresponding orthogonal principal curvature directions $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$. Prove that the normal curvature $k(\mathbf{v})$ in the direction $\mathbf{v} \in S_p$ is given by n				
12.	Let S be an n -surface in \mathbb{R}^{n+1} , oriented by the unit normal vector field \mathbb{N} . Let $p \in S$ and $v \in S_p$. Prove that for every parametrized curve $\alpha : I \to S$, with $\dot{\alpha}(t_0) = v$ for some $t_0 \in I$, $\ddot{\alpha}(t_0) \cdot \mathbb{N}(p) = L_P(v) \cdot v$. Let S be an oriented n -surface in \mathbb{R}^{n+1} , let $p \in S$, and let $\{k_1(p), \ldots, k_n(p)\}$ be the principal curvatures of S at p with corresponding orthogonal principal curvature directions $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$. Prove that the normal curvature $k(\mathbf{v})$ in the direction $\mathbf{v} \in S_p$ is given by $k(\mathbf{v}) = \sum_{i=1}^n k_i(p)(\mathbf{v} \cdot \mathbf{v}_i)^2 = \sum_{i=1}^n k_i(p) \cos^2 \theta_i$ where	(A, CO 3)			
12.	Let S be an n -surface in \mathbb{R}^{n+1} , oriented by the unit normal vector field \mathbb{N} . Let $p \in S$ and $v \in S_p$. Prove that for every parametrized curve $\alpha : I \to S$, with $\dot{\alpha}(t_0) = v$ for some $t_0 \in I$, $\ddot{\alpha}(t_0) \cdot \mathbb{N}(p) = L_P(v) \cdot v$. Let S be an oriented n -surface in \mathbb{R}^{n+1} , let $p \in S$, and let $\{k_1(p), \ldots, k_n(p)\}$ be the principal curvatures of S at p with corresponding orthogonal principal curvature directions $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$. Prove that the normal curvature $k(\mathbf{v})$ in the direction $\mathbf{v} \in S_p$ is given by n	(A, CO 3)			
12.	Let S be an n -surface in \mathbb{R}^{n+1} , oriented by the unit normal vector field \mathbb{N} . Let $p \in S$ and $v \in S_p$. Prove that for every parametrized curve $\alpha : I \to S$, with $\dot{\alpha}(t_0) = v$ for some $t_0 \in I$, $\ddot{\alpha}(t_0) \cdot \mathbb{N}(p) = L_P(v) \cdot v$. Let S be an oriented n -surface in \mathbb{R}^{n+1} , let $p \in S$, and let $\{k_1(p), \ldots, k_n(p)\}$ be the principal curvatures of S at p with corresponding orthogonal principal curvature directions $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$. Prove that the normal curvature $k(\mathbf{v})$ in the direction $\mathbf{v} \in S_p$ is given by $k(\mathbf{v}) = \sum_{i=1}^n k_i(p)(\mathbf{v} \cdot \mathbf{v}_i)^2 = \sum_{i=1}^n k_i(p) \cos^2 \theta_i$ where	(A, CO 3)			
12.	Let S be an n -surface in \mathbb{R}^{n+1} , oriented by the unit normal vector field \mathbb{N} . Let $p \in S$ and $v \in S_p$. Prove that for every parametrized curve $\alpha: I \to S$, with $\dot{\alpha}(t_0) = v$ for some $t_0 \in I$, $\ddot{\alpha}(t_0) \cdot \mathbb{N}(p) = L_P(v) \cdot v$. Let S be an oriented n -surface in \mathbb{R}^{n+1} , let $p \in S$, and let $\{k_1(p), \ldots, k_n(p)\}$ be the principal curvatures of S at p with corresponding orthogonal principal curvature directions $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$. Prove that the normal curvature $k(\mathbf{v})$ in the direction $\mathbf{v} \in S_p$ is given by $k(\mathbf{v}) = \sum_{i=1}^n k_i(p)(\mathbf{v} \cdot \mathbf{v}_i)^2 = \sum_{i=1}^n k_i(p) \cos^2 \theta_i$ where $\theta_i = \cos^{-1}(\mathbf{v} \cdot \mathbf{v}_i)$. Determine whether the vector field $\mathbb{X}(x_1, x_2) = (x_1, x_2, 1 + x_1^2, 0)$	(A, CO 3) (A)			
12. 13. 14.	Let S be an n -surface in \mathbb{R}^{n+1} , oriented by the unit normal vector field \mathbb{N} . Let $p \in S$ and $v \in S_p$. Prove that for every parametrized curve $\alpha : I \to S$, with $\dot{\alpha}(t_0) = v$ for some $t_0 \in I$, $\ddot{\alpha}(t_0) \cdot \mathbb{N}(p) = L_P(v) \cdot v$. Let S be an oriented n -surface in \mathbb{R}^{n+1} , let $p \in S$, and let $\{k_1(p), \ldots, k_n(p)\}$ be the principal curvatures of S at p with corresponding orthogonal principal curvature directions $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$. Prove that the normal curvature $k(\mathbf{v})$ in the direction $\mathbf{v} \in S_p$ is given by $k(\mathbf{v}) = \sum_{i=1}^n k_i(p)(\mathbf{v} \cdot \mathbf{v}_i)^2 = \sum_{i=1}^n k_i(p) \cos^2 \theta_i$ where $\theta_i = \cos^{-1}(\mathbf{v} \cdot \mathbf{v}_i)$. Determine whether the vector field $\mathbb{X}(x_1, x_2) = (x_1, x_2, 1 + x_1^2, 0)$ where $U = \mathbb{R}^2$ is complete or not. Explain the surface of revolution S obtained by rotating the curve C about the x_1 -axis where $C = f^{-1}(c)$ for some $f: U \to \mathbb{R}; U \subseteq \mathbb{R}^{n+1}$ with	(A, CO 3) (A) (An, CO 1)			
 12. 13. 14. 15. 	Let S be an n -surface in \mathbb{R}^{n+1} , oriented by the unit normal vector field \mathbb{N} . Let $p \in S$ and $v \in S_p$. Prove that for every parametrized curve $\alpha : I \to S$, with $\dot{\alpha}(t_0) = v$ for some $t_0 \in I$, $\ddot{\alpha}(t_0) \cdot \mathbb{N}(p) = L_P(v) \cdot v$. Let S be an oriented n -surface in \mathbb{R}^{n+1} , let $p \in S$, and let $\{k_1(p), \ldots, k_n(p)\}$ be the principal curvatures of S at p with corresponding orthogonal principal curvature directions $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$. Prove that the normal curvature $k(\mathbf{v})$ in the direction $\mathbf{v} \in S_p$ is given by $k(\mathbf{v}) = \sum_{i=1}^n k_i(p)(\mathbf{v} \cdot \mathbf{v}_i)^2 = \sum_{i=1}^n k_i(p) \cos^2 \theta_i$ where $\theta_i = \cos^{-1}(\mathbf{v} \cdot \mathbf{v}_i)$. Determine whether the vector field $\mathbb{X}(x_1, x_2) = (x_1, x_2, 1 + x_1^2, 0)$ where $U = \mathbb{R}^2$ is complete or not. Explain the surface of revolution S obtained by rotating the curve C about the x_1 -axis where $C = f^{-1}(c)$ for some $f: U \to \mathbb{R}; \ U \subseteq \mathbb{R}^{n+1}$ with $\nabla f(p) \neq 0, \ \forall p \in C$.	(A, CO 3) (A) (An, CO 1) (A, CO 1)			

Name

24P4015

18.	Let V be a finite dimensional vector space with dot product and let v:V o V be a self-adjoint linear transformation on V . Let $V=\{v\in V:v\cdot v=1\}$ and define $f:S o \mathbb{R}$ by $f(v)=L(v)\cdot v$. Suppose f is stationary at $v_0\in S$. Prove that $L(v_0)=f(v_0)v_0$.	(An, CO 4)
		(2 x 6 = 12)
	PART C	
	Answer any 2 questions	Weights: 5
19.	Let $S = f^{-1}(c)$, where $f : \mathbb{R}^{n+1} \to \mathbb{R}$ is a smooth function such that $\nabla f(p) \neq 0$ for all $p \in S$. Suppose $\alpha : \mathbb{R} \to \mathbb{R}^{n+1}$ is a parametrized curve which is nowhere tangent to S . (i) Show that at each pair of consecutive crossings of S by α the direction of the orientation $\nabla f / \nabla f $ on S reverses relative to the direction of α . (ii) Show that S is compact and α goes to ∞ in both directions.	(A)
20.	Let $arphi:U o \mathbb{R}^{n+1}$ be a parametrized n -surface in \mathbb{R}^{n+1} and let $p\in U$. Prove that there exists an open set $U_1\subset U$ about p such that $arphi(U_1)$ is an n -surface in \mathbb{R}^{n+1} .	(A, CO 4)
21.	Let S be an n -surface in \mathbb{R}^{n+1} , let \mathbb{X} be a smooth tangent vector field on S , and let $p \in S$. Prove that there exists an open interval I containing 0 and a parametrized curve $\alpha : I \to S$ such that (i) $\alpha(0) = p$ (ii) $\dot{\alpha}(t) = \mathbb{X}(\alpha(t))$ for all $t \in I$ (iii) If $\beta : \tilde{I} \to S$ is any other parametrized curve in S satisfying (i) and (ii) , then $\tilde{I} \subseteq I$ and $\beta(t) = \alpha(t)$ for all $t \in \tilde{I}$.	(An, CO 1)
22.	Define local parametrization of a plane curve C and prove that the local parametrization is unique upto a reparametrization.	(An, CO 3) (5 x 2 = 10)

СО	Course Outcome Description	CL	Questions	Total Wt.
CO 1	Perceive the ideas of graphs and level sets, vector fields, the tangent space, surfaces, vector fields on surfaces, orientation.	U	4, 5, 6, 14, 15, 21	12
CO 2	Explain the fundamentals of the Gauss map, geodesics, and parallel transport.	А	1, 8, 11, 17	6
CO 3	Summarize the ideas of the Weingarten map, the curvature of plane curves, arc length, and line integrals.	An	3, 7, 12, 16, 22	11
CO 4	Estimate the curvature of surfaces	Е	2, 10, 18, 20	9

OBE: Questions to Course Outcome Mapping

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;