\qquad

M. Sc. DEGREE END SEMESTER EXAMINATION : MARCH 2024
 SEMESTER 4 - MATHEMATICS
 COURSE : 21P4MATTEL17 - DIFFERENTIAL GEOMETRY
 (For Regular - 2022 Admission and Supplementary - 2021 Admission)

Duration : Three Hours
Max. Weights: 30

PART A

Answer any 8 questions

Weight: 1

1. Prove that the geodesics have constant speed.
2. Define Gauss - Kronecker curvature.
3. Give Frenet formula for a plane curve.
4. Define the height of a level set.
5. Sketch the vector field on $\mathbb{R}^{2}: \mathbb{X}(p)=(p, X(p))$ where $X\left(x_{1}, x_{2}\right)=\left(-x_{1},-x_{2}\right)$.
6. Describe the level sets of $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}-x_{2}^{2}+x_{3}$, for $n=0,1,2$.
7. Let f and g be two smooth functions on the open set $J \subset R^{n+1}$ show that $d(f+g)=d f+d g$.
8. Find the velocity, the acceleration, and the speed of parametrized curve $\alpha(t)=\left(t, t^{2}\right)$
9. Show that parallel vector fields form vector space.
10. Explain the first and the second fundamental form of a surface S.

PART B

Answer any 6 questions

Weights: 2
11. Distinguish between Euclidean parallelism and Levi-Civita parallelism.
$\alpha: I \rightarrow S$, with $\dot{\alpha}\left(t_{0}\right)=v$ for some $t_{0} \in I, \ddot{\alpha}\left(t_{0}\right) \cdot \mathbb{N}(p)=L_{P}(v) \cdot v$.
13. Let S be an oriented n-surface in \mathbb{R}^{n+1}, let $p \in S$, and let
$\left\{k_{1}(p), \ldots, k_{n}(p)\right\}$ be the principal curvatures of S at p with corresponding orthogonal principal curvature directions $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$.
Prove that the normal curvature $k(\mathbf{v})$ in the direction $\mathbf{v} \in S_{p}$ is given by
$k(\mathbf{v})=\sum_{i=1}^{n} k_{i}(p)\left(\mathbf{v} \cdot \mathbf{v}_{i}\right)^{2}=\sum_{i=1}^{n} k_{i}(p) \cos ^{2} \theta_{i}$ where
$\theta_{i}=\cos ^{-1}\left(\mathbf{v} \cdot \mathbf{v}_{i}\right)$.
14. Determine whether the vector field $\mathbb{X}\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}, 1+x_{1}^{2}, 0\right)$ where $U=\mathbb{R}^{2}$ is complete or not.
15. Explain the surface of revolution S obtained by rotating the curve C about the x_{1}-axis where $C=f^{-1}(c)$ for some $f: U \rightarrow \mathbb{R} ; U \subseteq \mathbb{R}^{n+1}$ with $\nabla f(p) \neq 0, \quad \forall p \in C$.
16. Compute $\nabla_{v} f$ where $f(q)=q \cdot q, \mathbf{v}=(p, v)$.
17. Explain parallel transport.
18. Let V be a finite dimensional vector space with dot product and let $L: V \rightarrow V$ be a self-adjoint linear transformation on V. Let $S=\{v \in V: v \cdot v=1\}$ and define $f: S \rightarrow \mathbb{R}$ by $f(v)=L(v) \cdot v$.
Suppose f is stationary at $v_{0} \in S$. Prove that $L\left(v_{0}\right)=f\left(v_{0}\right) v_{0}$.
($2 \times 6=12$)

PART C

Answer any 2 questions

Weights: 5

19. Let $S=f^{-1}(c)$, where $f: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ is a smooth function such that $\nabla f(p) \neq 0$ for all $p \in S$. Suppose $\alpha: \mathbb{R} \rightarrow \mathbb{R}^{n+1}$ is a parametrized curve which is nowhere tangent to S.
(i) Show that at each pair of consecutive crossings of S by α the direction of the orientation $\nabla f /\|\nabla f\|$ on S reverses relative to the direction of α.
(ii) Show that S is compact and α goes to ∞ in both directions.
20. Let $\varphi: U \rightarrow \mathbb{R}^{n+1}$ be a parametrized n-surface in \mathbb{R}^{n+1} and let $p \in U$. Prove that there exists an open set $U_{1} \subset U$ about p such that $\varphi\left(U_{1}\right)$ is an n-surface in \mathbb{R}^{n+1}.
21. Let S be an n-surface in \mathbb{R}^{n+1}, let \mathbb{X} be a smooth tangent vector field on S, and let $p \in S$. Prove that there exists an open interval I containing 0 and a parametrized curve $\alpha: I \rightarrow S$ such that
(i) $\alpha(0)=p$
(ii) $\dot{\alpha}(t)=\mathbb{X}(\alpha(t))$ for all $t \in I$
(iii) If $\beta: \tilde{I} \rightarrow S$ is any other parametrized curve in S satisfying (i) and (ii), then $\tilde{I} \subseteq I$ and $\beta(t)=\alpha(t)$ for all $t \in \tilde{I}$.
22. Define local parametrization of a plane curve C and prove that the local parametrization is unique upto a reparametrization.

OBE: Questions to Course Outcome Mapping

CO	Course Outcome Description	CL	Questions	Total Wt.
CO 1	Perceive the ideas of graphs and level sets, vector fields, the tangent space, surfaces, vector fields on surfaces, orientation.	U	$4,5,6,14$, 15,21	12
CO 2	Explain the fundamentals of the Gauss map, geodesics, and parallel transport.	A	$1,8,11,17$	6
CO 3Summarize the ideas of the Weingarten map, the curvature of plane curves, arc length, and line integrals.	An	$3,7,12,16$, 22	11	
CO 4	Estimate the curvature of surfaces	E	$2,10,18,20$	9

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;

