$\qquad$ Name $\qquad$
M. Sc. DEGREE END SEMESTER EXAMINATION - OCTOBER 2019 SEMESTER 1 : CHEMISTRY / PHARMACEUTICAL CHEMISTRY COURSE : 16P1CHET04 / 16P1CPHT04 : QUANTUM CHEMISTRY AND GROUP THEORY
(For Regular - 2019 Admission and Supplementary - 2016/2017/2018 Admissions)

Time : Three Hours

Max. Marks: 75

## Section A <br> Answer any 10 (2 marks each)

1. In molecules with center of symmetry, IR active vibrations are not Raman active. Explain
2. Derive a reducible representation for $\mathrm{C}_{3 v}$ point group using the $\mathrm{C}-\mathrm{H}$ bonds of methoxide anion
3. What are direct product representations of a point group? Illustrate with $\mathrm{C}_{2 \mathrm{v}}$ point group
4. Identify the point group of the molecules with following set of operations (a) $\left\{E, C_{2(z)}, C_{2(x)}, C_{2(y)}\right.$,
i, $S(x y), S(x z), S(y z)\}$
(b) $\left\{E, 8 C_{3}, 3 C_{2}, 6 S_{4}, 6 S_{d}\right\}$
5. Explain the concept Block diagonalisation.
6. Verify that wave functions of a particle in 1D box of width $a$ and infinite height are orthogonal.
7. What is Hamiltonian operator ? Write the Hamiltonian operator for an atom resides in a room with 3-dimensions.
8. Why does $\Psi^{*} \Psi$ have to be everywhere real, nonnegative, finite and of definite value ?
9. Zero point energy of a rigid rotator is zero. Is this against the uncertainty principle?
10. Sketch the rough graphs of $\Psi$ and of $\Psi^{2}$ for the $n=4$ and $n=5$ states for a particle-in 1-D-box.
11. Calculate the probability that a particle in one-dimensional box of length ' $a$ ' is found to be between 0 and $\mathrm{a} / 2$.
12. Apply the free electron model to the $6 \pi$ electron system-hexatriene. Assuming that the length of hexatriene molecule is 867 pm , show that the first electronic transition is predicted to occur at $2.8 \times 10^{4} \mathrm{~cm}^{-1}$.
13. Define Bohr radius

$$
(2 \times 10=20)
$$

## Section B

Answer any 5 (5 marks each)
14. Determine the type of hybridization in methane molecule using the character table for Td point group.

15. Prove the mutual exclusion principle using the given reducible representations of trans $\mathrm{N}_{2} \mathrm{~F}_{2}$ and trans dichloro ethylene molecules

| $\mathrm{C}_{2 \mathrm{~h}}$ | E | $\mathrm{C}_{2}$ | i | б xz |
| :---: | :---: | :---: | :---: | :---: |
| $\Gamma(\mathrm{R})-\mathrm{N}_{2} \mathrm{~F}_{2}$ | 12 | 0 | 0 | 4 |
| $\Gamma(\mathrm{R})-$ trans |  |  |  |  |
| dichloro ethylene |  |  |  |  |

16. What are reducible and irreducible representations of a group? Find a reducible representation of the group by taking p orbitals of 1,3 butadiene molecule.
17. Write the operations of $\mathrm{C}_{2 \mathrm{~h}}$ point group. Construct the group multiplication table for this group and find the subgroups. Give an example of a molecule that belongs to this group.
18. Prove that $\left[L^{2}, L_{X}\right]=0$.
19. Discuss the physical origin of quantum mechanical tunnelling. Identify two chemical systems where tunnelling might play a role.
20. To a good approximation, the microwave spectrum of $\mathrm{H}^{35} \mathrm{Cl}$ consists of a series of equally spaced lines, separated by $6.26 \times 10^{11} \mathrm{~Hz}$. Calculate the bond length of $\mathrm{H}^{35} \mathrm{Cl}$.
21. Write the Legendre polynomial expression in spherical harmonics. Show that (a) the associated Legendre polynomial $P_{I} / m /$ vanishes whenever $/ \mathrm{m} />I$ (b) the $P_{I} / \mathrm{m} /$ reduce to Legendre polynomial PI when $\mathrm{m}=0$.

$$
(5 \times 5=25)
$$

## Section C

## Answer any 2 ( 15 marks each)

22. Determine the symmetris of the vibrational modes of $\mathrm{CHCl}_{3}$ molecule and determine which one are IR and Raman active using normal co-ordianate analysis.
23. What are character tables? State the theorem concerning the irreducible representations of a group. And use the theorem to derive the character table for $\mathrm{C}_{2 v}$ point group.
24. (a)Show that the variables in the Schrödinger equation for a cubic box may be separated and the overall wavefunctions expressed as $X(x) . Y(y) . Z(z)$. (b) Deduce the energy levels and wavefunctions. (c) Show that the wavefunctions are orthonormal (d) what is the degeneracy of the level with $\mathrm{E}=14 \mathrm{~h}^{2} / 8 \mathrm{ml}^{2}$
25. Solve the Schrodinger equation for hydrogen atom. Discuss the solutions in detail
