Name

M. Sc. DEGREE END SEMESTER EXAMINATION - OCTOBER 2019 SEMESTER 1 : CHEMISTRY / PHARMACEUTICAL CHEMISTRY COURSE : 16P1CHET04 / 16P1CPHT04 : QUANTUM CHEMISTRY AND GROUP THEORY (For Regular - 2019 Admission and Supplementary - 2016/2017/2018 Admissions)

Time : Three Hours

Max. Marks: 75

Section A Answer any 10 (2 marks each)

- 1. In molecules with center of symmetry, IR active vibrations are not Raman active. Explain
- 2. Derive a reducible representation for C_{3v} point group using the C-H bonds of methoxide anion
- 3. What are direct product representations of a point group? Illustrate with C_{2v} point group
- Identify the point group of the molecules with following set of operations (a) {E, C_{2(z)}, C_{2(x)}, C_{2(y)}, i, S_(xz), S_(yz) } (b) {E, 8C₃, 3C₂, 6S₄, 6s_d}
- 5. Explain the concept Block diagonalisation.
- 6. Verify that wave functions of a particle in 1D box of width *a* and infinite height are orthogonal.
- 7. What is Hamiltonian operator ? Write the Hamiltonian operator for an atom resides in a room with 3-dimensions.
- 8. Why does $\Psi^*\Psi$ have to be everywhere real, nonnegative, finite and of definite value ?
- 9. Zero point energy of a rigid rotator is zero. Is this against the uncertainty principle?
- 10. Sketch the rough graphs of Ψ and of Ψ^2 for the n = 4 and n = 5 states for a particle-in 1-D-box.
- 11. Calculate the probability that a particle in one-dimensional box of length 'a' is found to be between 0 and a/2.
- 12. Apply the free electron model to the 6π electron system-hexatriene. Assuming that the length of hexatriene molecule is 867 pm, show that the first electronic transition is predicted to occur at 2.8×10^4 cm⁻¹.
- 13. Define Bohr radius

 $(2 \times 10 = 20)$

Section B Answer any 5 (5 marks each)

14. Determine the type of hybridization in methane molecule using the character table for Td point group.

Td E	8C3	3C ₂	6S4	6σ _d	linear, rotations	quadratic
A ₁ 1	1	1	1	1		$x^2+y^2+z^2$
A ₂ 1	1	1	-1	-1		
E 2	-1	2	0	0		$(2z^2-x^2-y^2, x^2-y^2)$
T₁ 3	0	-1	1	-1	(R_{x},R_{y},R_{z})	
T a 3	0	-1	-1	1	(x, y, z)	(xy, xz, yz)
•25	0	-	-	-	(γ, γ, z)	

15. Prove the mutual exclusion principle using the given reducible representations of trans N₂F₂ and trans dichloro ethylene molecules

C _{2h}	E	C ₂	i	бxz
$\Gamma(R) - N_2F_2$	12	0	0	4
$\Gamma(R)$ – trans dichloro ethylene	18	0	0	6

- 16. What are reducible and irreducible representations of a group? Find a reducible representation of the group by taking p orbitals of 1,3 butadiene molecule.
- 17. Write the operations of C_{2h} point group. Construct the group multiplication table for this group and find the subgroups. Give an example of a molecule that belongs to this group.
- 18. Prove that $[L^2, L_x] = 0$.
- 19. Discuss the physical origin of quantum mechanical tunnelling. Identify two chemical systems where tunnelling might play a role.
- 20. To a good approximation, the microwave spectrum of $H^{35}CI$ consists of a series of equally spaced lines, separated by 6.26×10^{11} Hz. Calculate the bond length of $H^{35}CI$.
- 21. Write the Legendre polynomial expression in spherical harmonics. Show that (a) the associated Legendre polynomial $P_I / m / vanishes$ whenever /m / > I (b) the $P_I / m / reduce$ to Legendre polynomial PI when m = 0.

(5 x 5 = 25)

Section C Answer any 2 (15 marks each)

- 22. Determine the symmetris of the vibrational modes of CHCl₃ molecule and determine which one are IR and Raman active using normal co-ordianate analysis.
- 23. What are character tables? State the theorem concerning the irreducible representations of a group. And use the theorem to derive the character table for C_{2v} point group.
- 24. (a)Show that the variables in the Schrödinger equation for a cubic box may be separated and the overall wavefunctions expressed as $X(x) \cdot Y(y)$. Z (z). (b) Deduce the energy levels and wavefunctions. (c) Show that the wavefunctions are orthonormal (d) what is the degeneracy of the level with $E = 14h^2/8ml^2$
- 25. Solve the Schrodinger equation for hydrogen atom . Discuss the solutions in detail

(15 x 2 = 30)