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PART A
Answer any 10 (2 marks each)

1. Show that the existence of the deriva�ve of a func�on at a point implies the con�nuity fo
the func�on at that point.

2. Compute the Maclaurin series expansion of .

3. Write the coefficient of  in the Taylor series expansion of .

4. Define order of a pole. 

5. Show that an an�deriva�ve of a given func�on  is unique except for an addi�ve

constant.

6. Find the principal value of .

7. Define isolated singularity.

8.
True or false:  for any closed contour . Jus�fy.

9. State Jordan cuve theorem.

10. Write the Laurent series expansion of  about .

11.
Evaluate P.V.

12. Use defini�on to evaluate , where .

PART B
Answer any 5 (5 marks each)

13. State and prove Cauchy's inequality. 

14.
Prove that  whenever .

15. Suppose that  and . Show that .

16.
Compute the residue of   at .

17. Let  denote a contour of length , and suppose that a func�on  is piecewise

con�nuous on . If  is a nonnega�ve constant such that  for all points  on

 at which  is defined , then prove that 
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(5 x 5 = 25)

(10 x 3 = 30)

18. Suppose that  and . Prove that  if and only

if  and  .

19.
Find the residues of the singulari�es of .

20. Use defini�on to show that , where .

PART C
Answer any 3 (10 marks each)

21. State and prove Morera's theorem.

22. Show that the absolute convergence of a series of complex numbers implies the
convergence of that series. Is the converse true. Jus�fy

23. Prove that an isolated singular point  of a func�on  is a pole of order  if and only if

 can be wri�en in the form   where  is analy�c and nonzero at

 and 

24. Let  and .

Show that  if and only if  and 
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