Max. Weights: 30

M. Sc. DEGREE END SEMESTER EXAMINATION : NOVEMBER 2023

SEMESTER 1 : MATHEMATICS

COURSE : 21P1MATT04 : ORDINARY DIFFERENTIAL EQUATIONS

(For Regular -2023 Admission and Improvement/Supplementary-2022/2021 Admissions)

Duration : Three Hours

	PART A	
	Answer any 8 questions	Weight: 1
1.	Find the normal form of Bessel's equation $x^2y'' + xy' + (x^2 - p^2)y = 0$, and use it to show that every nontrivial solution has infinitely many positive zeros.	(A, CO 1)
2.	Find the critical points of the system $rac{dx}{dt}=y^2-5x+6, rac{dy}{dt}=x-y.$	(U, CO 3)
3.	Show that $rac{d}{dx}(xJ_1(x))=xJ_0(x).$	(A, CO 2)
4.	Examine the existence and uniqueness of solution for the initial value problem $y^\prime = x-y+1, y(1)=2.$	(A, CO 4)
5.	Express the function in terms of Legendre's polynomial $f(x)=x^4.$	(E)
6.	Define orthogonality of functions.	(R, CO 1)
7.	Evaluate $\int_{-1}^1 x P_n^2(x) dx.$	(U, CO 2)
8.	Describe the phase portrait of the system $rac{dx}{dt}=1, rac{dy}{dt}=2.$	(A, CO 3)
9.	Calculate $(\frac{3}{2})!$	(U, CO 2)
10.	Determine the nature and stability properties of the critical point (0, 0) for the linear autonomous system $\frac{dx}{dt} = -4x - y, \frac{dy}{dt} = x - 2y.$	(A, CO 3)
	dt dt dt	
		(1 x 8 = 8)
	PART B	
	PART B Answer any 6 questions	(1 x 8 = 8) Weights: 2
11.	PART B	
11. 12.	PART B Answer any 6 questions Find the eigenvalues and eigenfunctions for the equation	Weights: 2
	PART B Answer any 6 questions Find the eigenvalues and eigenfunctions for the equation $y'' + \lambda y = 0, y(0) = 0, y(L) = 0.$	Weights: 2 (A, CO 1)
12.	PART B Answer any 6 questions Find the eigenvalues and eigenfunctions for the equation $y'' + \lambda y = 0, y(0) = 0, y(L) = 0.$ Express $J_4(x)$ in terms of J_0 and J_1 . Determine the nature and stability properties of the critical point (0, 0) for the linear autonomous system	Weights: 2 (A, CO 1) (A, CO 2)
12. 13.	PART B Answer any 6 questions Find the eigenvalues and eigenfunctions for the equation $y'' + \lambda y = 0, y(0) = 0, y(L) = 0.$ Express $J_4(x)$ in terms of J_0 and J_1 . Determine the nature and stability properties of the critical point (0, 0) for the linear autonomous system $\frac{dx}{dt} = 5x + 2y, \frac{dy}{dt} = -17x - 5y.$ Show that the Picard's theorem ensures a unique solution in the interval	Weights: 2 (A, CO 1) (A, CO 2) (A, CO 3)
12. 13. 14.	PART B Answer any 6 questions Find the eigenvalues and eigenfunctions for the equation $y'' + \lambda y = 0, y(0) = 0, y(L) = 0.$ Express $J_4(x)$ in terms of J_0 and J_1 . Determine the nature and stability properties of the critical point (0, 0) for the linear autonomous system $\frac{dx}{dt} = 5x + 2y, \frac{dy}{dt} = -17x - 5y.$ Show that the Picard's theorem ensures a unique solution in the interval $ x \leq 1/2$ for the initial value problem $dy/dx = x + y^2, y(0) = 0.$	Weights: 2 (A, CO 1) (A, CO 2) (A, CO 3) (A, CO 4)
12. 13. 14. 15.	PART B Answer any 6 questions Find the eigenvalues and eigenfunctions for the equation $y'' + \lambda y = 0, y(0) = 0, y(L) = 0.$ Express $J_4(x)$ in terms of J_0 and J_1 . Determine the nature and stability properties of the critical point (0, 0) for the linear autonomous system $\frac{dx}{dt} = 5x + 2y, \frac{dy}{dt} = -17x - 5y.$ Show that the Picard's theorem ensures a unique solution in the interval $ x \leq 1/2$ for the initial value problem $dy/dx = x + y^2, y(0) = 0.$ Solve the vibrating string problem with initial shape $f(x) = \frac{x}{\pi}(\pi - x).$	Weights: 2 (A, CO 1) (A, CO 2) (A, CO 3) (A, CO 4) (A, CO 1)

	PART C	
	Answer any 2 questions	Weights: 5
19.	State and prove orthogonality property of Legendre polynomials.	(An, CO 2)
20.	For the following linear system , find the general solution , differential equation of the paths and its solution. Sketch a few paths showing the direction of increasing t and discuss the stability of the critical point (0,0). dx/dt = ax-y dy/dt = x+ay	(A, CO 3)
21.	State and prove Picard's theorem.	(An, CO 4)
22.	Explain the problem of vibrating srting.	(An, CO 1) (5 x 2 = 10)

OBE: Questions to Course Outcome Mapping

СО	Course Outcome Description	CL	Questions	Total Wt.
CO 1	Summarize the concepts of Sturm Separation theorem and Sturm Liouville problems	А	1, 6, 11, 15, 22	11
CO 2	Explain the properties of Legendre and Bessel's polynomials	А	3, 7, 9, 12, 16, 19	12
CO 3	Analyze the concept of linear and nonlinear systems and their stability	An	2, 8, 10, 13, 18, 20	12
CO 4	Illustrate the ideas of existence and uniqueness of solutions	An	4, 14, 17, 21	10

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;