\qquad
\qquad

M. Sc. DEGREE END SEMESTER EXAMINATION : NOVEMBER 2023 SEMESTER 1 : MATHEMATICS

 COURSE : 21P1MATTO4 : ORDINARY DIFFERENTIAL EQUATIONS(For Regular -2023 Admission and Improvement/Supplementary-2022/2021 Admissions)
Max. Weights: 30

PART A

Answer any 8 questions

Weight: 1

1. Find the normal form of Bessel's equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0$, and use it to show that every nontrivial solution has infinitely many positive zeros.
2. Find the critical points of the system $\frac{d x}{d t}=y^{2}-5 x+6, \frac{d y}{d t}=x-y$.
3. Show that $\frac{d}{d x}\left(x J_{1}(x)\right)=x J_{0}(x)$.
4. Examine the existence and uniqueness of solution for the initial value problem $y^{\prime}=x-y+1, y(1)=2$.
5. Express the function in terms of Legendre's polynomial $f(x)=x^{4}$.
6. Define orthogonality of functions.
7. Evaluate $\int_{-1}^{1} x P_{n}^{2}(x) d x$.
8. Describe the phase portrait of the system $\frac{d x}{d t}=1, \frac{d y}{d t}=2$.
9. Calculate $\left(\frac{3}{2}\right)$!
(U, CO 2)
10. Determine the nature and stability properties of the critical point $(0,0)$ for the linear autonomous system
$\frac{d x}{d t}=-4 x-y, \frac{d y}{d t}=x-2 y$.
(A, CO 3)
$(1 \times 8=8)$
PART B
Answer any 6 questions
Weights: 2
(A, CO 1)
$y^{\prime \prime}+\lambda y=0, y(0)=0, y(L)=0$.
11. Express $J_{4}(x)$ in terms of J_{0} and J_{1}.
12. Determine the nature and stability properties of the critical point $(0,0)$ for the linear autonomous system
(A, CO 2)
(A, CO 3)
$\frac{d x}{d t}=5 x+2 y, \frac{d y}{d t}=-17 x-5 y$.
13. Show that the Picard's theorem ensures a unique solution in the interval $|x| \leq 1 / 2$ for the initial value problem $d y / d x=x+y^{2}, y(0)=0$
(A, CO 4)
(A, CO 1)
14. Solve the vibrating string problem with initial shape $f(x)=\frac{x}{\pi}(\pi-x)$.
15. Solve the following initial value problem upto third approximation. $d y / d x=2 x-y^{2}, y(0)=0$
16. Find the general solution of the system $\frac{d x}{d t}=x, \frac{d y}{d t}=y$.

PART C

Answer any 2 questions

Weights: 5

19. State and prove orthogonality property of Legendre polynomials.
20. For the following linear system, find the general solution, differential equation of the paths and its solution. Sketch a few paths showing the direction of increasing t and discuss the stability of the critical point $(0,0)$.
(A, CO 3) $d x / d t=a x-y$ $d y / d t=x+a y$
21. State and prove Picard's theorem.
22. Explain the problem of vibrating srting.

OBE: Questions to Course Outcome Mapping

CO	Course Outcome Description	CL	Questions	Tota Wt.
CO 1	Summarize the concepts of Sturm Separation theorem and Sturm Liouville problems	A	1, 6, 11, 15, 22	11
CO 2	Explain the properties of Legendre and Bessel's polynomials	A	$\begin{aligned} & 3,7,9,12,16, \\ & 19 \end{aligned}$	12
CO 3	Analyze the concept of linear and nonlinear systems and their stability	An	$\begin{aligned} & 2,8,10,13,18 \\ & 20 \end{aligned}$	12
CO 4	Illustrate the ideas of existence and uniqueness of solutions	An	4, 14, 17, 21	10

