Reg. No

M. A. DEGREE END SEMESTER EXAMINATION : NOVEMBER 2023

SEMESTER 1 : ECONOMICS

COURSE : 21P1ECOT05 : QUANTITATIVE TOOLS FOR ECONOMIC ANALYSIS

(For Regular - 2023 Admission and Improvement/Supplementary -2022/2021 Admissions) (Use of Scientific calculator and statistical tables are permitted)

Duration : Three Hours

Max. Weights: 30

	PART A	
	Answer any 8 questions	Weight: 1
1.	What are the important laws of matrix addition? Give examples.	(R)
2.	Explain (1) Marginal utility (2) marginal productivity	(R)
3.	What do you mean by consistent system of equations?	(R, CO 2)
4.	Define basic feasible solution	(R, CO 4)
5.	Distinguish upper and lower triangular matrix with example	(R)
6.	Find $\int rac{1}{3x} dx$	(A)
7.	Define elasticity of demand	(R, CO 2)
8.	What is optimization in L.P.P.	(R, CO 4)
9.	Find $\int rac{1}{9x-5} dx$	(A)
10.	Define (i) Diagonal matrix (ii) Singular matrix.	(R, CO 1)

 $(1 \times 8 = 8)$

PART B

Answer any 6 questions

Weights: 2

(A)

(R)

(R)

- 11. Integrate the following (i) $x(x^2+1)^3$ (ii) x^2e^x
- 12. The demand function for a good is given as P=50-2Q. (1) write down the expression for TR (A, and MR functions. Also calculate the output at which TR is a maximum(A)2)
- 13. Explain briefly input/output models and their uses?
- 14. Define consumer's surplus and producer's surplus

15.
If
$$A = \begin{bmatrix} -4 & 1 & 3 \\ 2 & 5 & -1 \\ 6 & 9 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} -4 & 2 & 7 \\ -2 & 1 & 5 \\ 3 & 2 & 4 \end{bmatrix}$ then verify whether $AB = BA_{(A)}$

16.

Find the inverse of the matrix
$$\begin{bmatrix} 4 & 6 & 3 \\ 8 & 2 & -4 \\ 7 & 4 & 5 \end{bmatrix}$$
 (A)

- 17. What do you mean by the dual of a linear programming problem? Explain the dual (R) advantages.
- 18. Differentiate the following

$$(a) y = x^2 e^x (b) P = \frac{Q}{3Q+5}$$
 (A)
(2 x 6 = 12)

	PART C Answer any 2 questions	Weights: 5
19.	Solve the following LP problem by the simplex method Maximise Z=3X+2Y subject to X+Y≤4, X-Y≤2; X,Y>0	(A, CO 4)
20.	Solve the following system of equations using matrix inverse method 4X+Y+2Z = 7 7X - Y+Z = 7 3X+4Y+Z = 8	(A)
21.	The demand and supply function for a good are $P=100-0.5Q~and~P=10+0.5Q$ respectively Calculate consumer and producer surplus at equilibrium	(A)
22.	Verify Euler's theorem for the following $Z=x^2+xy+y^2$	(A) (5 x 2 = 10)

OBE: Questions to Course Outcome Mapping

CO	Course Outcome Description	CL	Questions	Total Wt.
CO 1		Е	10	1
CO 2		А	3, 7, 12	4
CO 4		А	4, 8, 19	7

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;