B. Sc. DEGREE END SEMESTER EXAMINATION : NOVEMBER 2023 SEMESTER 3 : MATHEMATICS (CORE COURSE) FOR B.Sc COMPUTER APPLICATION COURSE : 19U3CRCMT4 : VECTOR CALCULUS, TRIGONOMETRY AND MATRICES

(For Regular - 2022 Admission and Improvement/Supplementary - 2021/2020/2019 Admissions)

Time : Three Hours

Max. Marks: 75

PART A Answer any 10 (2 marks each)

- 1. If $\phi = 2xz^4 x^2y$, find grad ϕ .
- 2. Evaluate $div\left[(xy\sin z)m{i}+ig(y^2\sin xig)m{j}+ig(z^2\sinig(xyig)m{k}
 ight]$ at the point $ig(0,rac{\pi}{2},rac{\pi}{2}ig).$
- 3. Show that $\overrightarrow{F} = yz \ i + zx \ j + xy \ k$ is irrotational.
- 4. State Guass's divergence theorem.
- 5. A vector field is given by F=(siny)i+x(1+cosy)j.Evaluate the line integral over the circular path given by x²+y²=a²,z=0.
- 6. If $\mathbf{F} = (3x^2+6y)\mathbf{i}-14yz\mathbf{j}+20xz^2\mathbf{k}$, evaluate the line integral $\int_{\mathbf{C}} F dr$ from (0,0,0) to (1,1,1) along the path $x=t, y=t^2, z=t^3$.
- 7. Prove that $\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y$.
- 8. Separate into real and imaginary parts the expression tan(x+iy).

 $\begin{bmatrix} 1 & 2 & 3 & 0 \end{bmatrix}$

9. Prove that
$$tanh(x + y) = \frac{tanhx + tanhy}{1 + tanhxtanhy}$$

10.

Find the rank of
$$\begin{bmatrix} 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix}$$
11. Prove that $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ is orthogonal.
12. Find the eigen values of the matrix
$$\begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 2 \\ 1 & 1 & 2 \end{bmatrix}$$

 $(2 \times 10 = 20)$

PART B Answer any 5 (5 marks each)

- 13. In what direction from(3,1,-2) is the directional derivative of $\phi = x^2y^2z^4$ maximum and what is its magnitude?
- 14. If A is a vector function and ϕ is a scalar function, then prove that $\operatorname{div}(\phi A) = \phi \operatorname{div} A + (\operatorname{grad} \phi) A$.
- 15. If F=2yi-zj+xk, evaluate $\oint_c F \times dr$ along the curve x = cost,y=sin t,z=2 cos t from t=0 to t= $\frac{\pi}{2}$
- 16. Evaluate $\iint_{S} f \cdot \hat{n} dS$ where $f = zi + xj y^{2}zk$ and S is the surface of the cylinder $x^{2} + y^{2} = 1$ included in the first octant between planes z=0 and z=2.

17. If
$$\sin (\theta + i\phi) = \tan (x + iy)$$
, show that $\frac{\tan \theta}{\tan h \phi} = \frac{\sin 2x}{\sinh 2y}$

- ^{18.} Factorise x^{6} +1 into real factors.
- ^{19.} Solve the system of equations by matrix method. x + y + z = 8, x - y + 2z = 6, 3x + 5y - 7z = 14.

20. Find the inverse of A = $\begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$ by elementary row operations.

(5 x 5 = 25)

PART C Answer any 3 (10 marks each)

- 21. If A is a vector function and φ is a scalar function, then prove that
 a)div(φA) =φ divA + (gradφ).A
 b)curl(φA) =φ curlA + (gradφ)xA
- 22. Verify Green's theorem in the plane for $\oint_C (3x^2 - 8y^2)dx + (4y - 6xy)dy$ where *C* is the boundary of the region defined by x=0,y=0,x+y=1.
- 23. Find the sum to infinity of the following series. a) $\sin\alpha.\cos\alpha + \sin^2\alpha.\cos2\alpha + \sin^3\alpha.\cos3\alpha + \dots \infty$. b) $\sin\alpha - \frac{\sin(\alpha+2\beta)}{2!} + \frac{\sin(\alpha+4\beta)}{4!} - \dots \infty$ 24. Find the eigen values and eigen vectors of the matrix $\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$ (10 x 3 = 30)