\qquad

B. Sc. DEGREE END SEMESTER EXAMINATION : NOVEMBER 2023 SEMESTER 3 : MATHEMATICS (CORE COURSE) FOR B.Sc COMPUTER APPLICATION COURSE : 19U3CRCMT4 : VECTOR CALCULUS, TRIGONOMETRY AND MATRICES

(For Regular - 2022 Admission and Improvement/Supplementary - 2021/2020/2019 Admissions)
Time : Three Hours
Max. Marks: 75
PART A
Answer any 10 (2 marks each)

1. If $\phi=2 x z^{4}-x^{2} y$, find $\operatorname{grad} \phi$.
2. Evaluate $d i v\left[(x y \sin z) \boldsymbol{i}+\left(y^{2} \sin x\right) \boldsymbol{j}+\left(z^{2} \sin (x y)\right) \boldsymbol{k}\right]$ at the point $\left(0, \frac{\pi}{2}, \frac{\pi}{2}\right)$.
3. Show that $\overrightarrow{\mathrm{F}}=y z i+z x j+x y k$ is irrotational.
4. State Guass's divergence theorem.
5. A vector field is given by $\mathrm{F}=(\operatorname{siny}) \mathrm{i}+\mathrm{x}(1+\cos y) \mathrm{j}$.Evaluate the line integral over the circular path given by $x^{2}+y^{2}=a^{2}, z=0$.
6. If $\mathbf{F}=\left(3 \mathrm{x}^{2}+6 \mathrm{y}\right) \mathbf{i}-14 \mathrm{yzj}+20 \mathrm{xz}^{2} \mathbf{k}$, evaluate the line integral $\int_{\mathrm{C}} F$. $d r$ from $(0,0,0)$ to $(1,1,1)$ along the path $\mathrm{x}=\mathrm{t}, \mathrm{y}=\mathrm{t}^{2}, \mathrm{z}=\mathrm{t}^{3}$.
7. Prove that $\sinh (x+y)=\sinh x \cosh y+\cosh x \sinh y$.
8. Separate into real and imaginary parts the expression $\tan (x+i y)$.
9. Prove that $\tanh (x+y)=\frac{\tanh x+\tanh y}{1+\tanh x \tanh y}$
10.

Find the rank of $\left[\begin{array}{cccc}1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5\end{array}\right]$
11. Prove that $A=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ is orthogonal.
12.

Find the eigen values of the matrix $\left[\begin{array}{ccc}1 & -1 & 0 \\ 2 & 3 & 2 \\ 1 & 1 & 2\end{array}\right]$.

PART B

Answer any 5 (5 marks each)

13. In what direction from(3,1,-2) is the directional derivative of $\phi=x^{2} y^{2} z^{4}$ maximum and what is its magnitude?
14. If A is a vector function and ϕ is a scalar function, then prove that $\operatorname{div}(\phi A)=\phi \operatorname{divA}+$ $(\operatorname{grad} \phi) . \mathrm{A}$.
15. If $\mathrm{F}=2 \mathrm{yi}-\mathrm{zj}+\mathrm{xk}$, evaluate $\oint_{c} F \times d r$ along the curve $\mathrm{x}=\operatorname{cost}, \mathrm{y}=\sin \mathrm{t}, \mathrm{z}=2 \cos \mathrm{t}$ from $\mathrm{t}=0$ to $\mathrm{t}=\frac{\pi}{2}$
16. Evaluate $\iint_{S} \boldsymbol{f} . \widehat{n} d S$ where $\boldsymbol{f}=z \boldsymbol{i}+x \boldsymbol{j}-y^{2} z \boldsymbol{k}$ and S is the surface of the cylinder $x^{2}+y^{2}=1$ included in the first octant between planes $\mathrm{z}=0$ and $\mathrm{z}=2$.
17. If $\sin (\theta+i \phi)=\tan (x+i y)$, show that $\frac{\tan \theta}{\tan h \phi}=\frac{\sin 2 x}{\sinh 2 y}$
18. Factorise $x^{6}+1$ into real factors.
19. Solve the system of equations by matrix method.
$x+y+z=8, \quad x-y+2 z=6,3 x+5 y-7 z=14$.
20.

Find the inverse of $A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$ by elementary row operations.
($5 \times 5=25$)

PART C

Answer any 3 (10 marks each)
21. If \mathbf{A} is a vector function and φ is a scalar function, then prove that
a) $\operatorname{div}(\varphi \mathbf{A})=\varphi \operatorname{div} \mathbf{A}+(\operatorname{grad} \varphi) \cdot \mathbf{A}$
b) $\operatorname{curl}(\varphi \mathbf{A})=\varphi \operatorname{curl} \mathbf{A}+(\operatorname{grad} \varphi) \times \mathbf{A}$
22. Verify Green's theorem in the plane for $\oint_{C}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$ where C is the boundary of the region defined by $x=0, y=0, x+y=1$.
23. Find the sum to infinity of the following series.
a) $\sin \alpha \cdot \cos \alpha+\sin ^{2} \alpha \cdot \cos 2 \alpha+\sin ^{3} \alpha \cdot \cos 3 \alpha+$.. \qquad ∞
b) $\sin \alpha-\frac{\sin (\alpha+2 \beta)}{2!}+\frac{\sin (\alpha+4 \beta)}{4!}$

Find the eigen values and eigen vectors of the matrix $\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$
($10 \times 3=30$)

