B.Sc DEGREE END SEMESTER EXAMINATION: NOVEMBER 2023 SEMESTER 3: MATHEMATICS FOR B.Sc. COMPUTER APPLICATIONS

COURSE: 19U3CRCMT3: CALCULUS

(For Regular - 2022 Admission and Improvement/Supplementary - 2021/2020/2019 Admissions)

Time: Three Hours Max. Marks: 75

PART A Answer any 10 (2 marks each)

1. Evaluate $\iint_R \ y \ dy \ dx$, where R is the region bounded by the parabolas $y^2 = 4x \ and \ x^2 = \ 4y$.

- 2. Evaluate the integral $\int_0^\pi \sin^2\left(1+rac{ heta}{2}
 ight)d heta.$
- 3 . Evaluate $\int_{0}^{3}\int_{0}^{2}xy\left(x+y\right) \,dy\,dx$.

Reg. No

- 4. Evaluate the integral $\int_0^{\pi/2} \frac{3 \sin x \, \cos x}{\sqrt{1+3 \sin^2 x}} dx$.
- 5. Find the points of inflecion on the curve $y = x^4 6x^2 + 8x 1$.
- 6. Find f_x, f_y and f_z if $f(x, y, z) = \sin^{-1}(xyz)$.
- 7. Find the n^{th} derivative of $\sin x \cos 3x$.
- 8. Expand $f(x)=2x^3+7x^2+x-6\ in\ powers\ of\ (x-2)$.
- $^{9.}$ Find the values of $rac{\partial f}{\partial x}$ and $rac{\partial f}{\partial y}$ at the point (2,-1) if $fig(x,yig)=3x^3y+4xy^2-2x+4y-5$.
- 10. Use the chain rule to find the derivative of $w=x^2+y^2$ with respect to t along the path x = cos t , y = sin t.What is the derivative's value at $t=\pi$.
- 11. If $f(x,y) = x^2y 2xy$ and $R: 0 \le x \le 3, -2 \le y \le 0$, then evaluate $\iint_R f(x,y) dA$.
- 12. Find the centroid of the region R between the semi-circle $y=\sqrt{a^2-x^2}$ and the x-axis.

 $(2 \times 10 = 20)$

PART B Answer any 5 (5 marks each)

- 13. Find the volume of the solid generated by revolving the region bounded by the curve $y=x^2$ and the lines y=0,x=2 about the x-axis.
- 14. Find the volume of the solid generated by revolving the region bounded by $y=\sqrt{x}$ and by the lines y = 2, and x = 0 about the line y = 2.
- 15. Show that the n^{th} derivative of $y = \tan^{-1} x$ is $(-1)^{n-1} \left(n-1\right)! \sin \left(\frac{\pi}{2} y\right) \sin^{n} \left(\frac{\pi}{2} y\right).$
- 16. Using chain rule express $\frac{\partial w}{\partial r} and \, \frac{\partial w}{\partial \theta}$ in terms of $r \, and \, \theta$, if $w = \tan^{-1} \left(y/x \right), \, x = r \, \cos \theta, \, y = r \, \sin \theta$. Also evaluate $\frac{\partial w}{\partial r} and \, \frac{\partial w}{\partial \theta}$ at the point (1, π /6).
- 17. Verify that $rac{\partial^2 w}{\partial x \partial y} = rac{\partial^2 w}{\partial y \partial x}$, when $w = x^y + \sin{(xy)}$.
- 18. Evaluate $\int_1^3 \int_{1/x}^1 \int_0^{\sqrt{xy}} xyz \, dz \, dy \, dx$.
- 19. Change the cartesian integral into equivalent polar integral and hence evaluate $\iint_R (x-y)^4 e^{x+y} dx dy$, where R is the square with vertices (1, 0), (2, 1), (1, 2) and (0, 1).
- 20. Find the radius of curvature of the cardioid $r = a(1 \cos \theta)$.

 $(5 \times 5 = 25)$

PART C

Answer any 3 (10 marks each)

- 21. Find the volume of the region D enclosed by the surfaces $z=x^2+3y^2$ and $z=8-x^2-y^2$.
- 22. Using Lagrange multipliers, find the greatest and smallest values that the function f(x,y)=xy takes on the ellipse $x^2+2y^2=1$.
- 23. a) Find all asymptotes of the curve $y^3-x^2y+2y^2+4y+x=0$. b) Show that the envelope of a circle whose centre lies on the parabola $y^2=4ax$ and which passes through its vertex is $2ay^2+x\left(x^2+y^2\right)=0$.
- 24. a) Find the area of the surface generated by revolving the curve $y=\sqrt{2x+1}, \quad 0 \leq x \leq 3,$ about the x-axis.
 - b) Find the volume of the solid generated by revolving the region bounded by the x-axis, the curve $y = 3x^4$ and the lines x = 1 and x = -1 about the line y = 3.

 $(10 \times 3 = 30)$