B.Sc. DEGREE END SEMESTER EXAMINATION: NOVEMBER 2023

Name

SEMESTER 3 : MATHEMATICS

COURSE: 19U3CRMAT03: VECTOR CALCULUS, THEORY OF EQUATIONS AND MATRICES

(For Regular - 2022 Admission and Improvement/Supplementary - 2021/2020/2019 Admissions)

Time : Three Hours Max. Marks: 75

PART A Answer any 10 (2 marks each)

- 1. Find the characteristic equation of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 3 & 8 & -1 \\ -1 & -2 & 6 \end{bmatrix}.$
- 2. Find the unit vector normal to the surface $iig)xy^3z^2=4\ at\ ig(-1,-1,2ig)$ $iiig)x^2y+2xz=4\ at\ ig(2,-2,3ig)$
- 3. Prove that $abla^2 f(r) = f^{"}(r) + rac{2}{r} f^"(r).$
- 4. Find the inverse of $\begin{bmatrix} 1 & 2 \\ 3 & 7 \end{bmatrix}$.
- 5. Evaluate the eigen values of $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$
- 6. Find the sum of the cubes of the roots of the equation $x^3-2x^2+x+1=0$
- 7. State Descarte's rule of signs and apply it to prove that the equation $x^3+2x+3=0$ has one negative and two imaginary roots.
- 8. Show that $abla.\left(\overline{A} imes\overline{B}\right)=\overline{B}.\left(\nabla imes\overline{A}\right)$ $\overline{A}.\left(\nabla imes\overline{B}\right)$.
- 9. State Gauss divergence theorem and prove that for any closed surface S, $\iint\limits_s curl\ \bar{F}.\,\hat{n}ds=0.$
- 10. If $lpha,eta,\gamma$ are the roots of the equation $x^3-px^2+qx-r=0$, find the value of $\sum lpha^2$.
- 11. Explain the term normal form of a matrix with examples.
- 12. State Stoke's theorem.

 $(2 \times 10 = 20)$

PART B Answer any 5 (5 marks each)

- 13. Solve $x^4 4x^3 + 7x^2 6x + 2 = 0$ using Ferrari's method.
- 14. Evaluate $\iint\limits_s \left(xi+yi+z^2k\right)$. $\widehat{n}ds$, where S is the closed surface bounded by the cone $x^2+y^2=z^2$ and the plane z=1.
- 15. Evaluate grad ϕ when $\phi=3x^2y-y^3z^2$ at the point (1,-2,-1)
- 16. Use divergence theorem to evaluate $\iint\limits_s \overline{F} \cdot ds$ where $\overline{F} = x^3i + y^3j + z^3k$ and S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$.
- 17. Prove that $\nabla \cdot \left(\overline{A} \cdot \overline{B} \right) = \nabla \cdot \overline{A} + \nabla \cdot \overline{B}$.

- 18. Evaluate the rank of the matrix $\begin{bmatrix} 1 & 4 & 5 \\ 2 & 6 & 8 \\ 3 & 7 & 22 \end{bmatrix}.$ 19. Verify Cayley Hamilton theorem for A = $\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}.$
- Find the roots of the equation $3x^6+x^5-27x^4+27x^2-x-3=0$. 20.

 $(5 \times 5 = 25)$

PART C Answer any 3 (10 marks each)

- Solve $x^5 10x^2 + 15x 6 = 0$ given that it has multiple roots.
- Verify divergence theorem for $\overline{F}=4xi-2y^2j+z^2k$ taken over the region bounded by the cyclinder $x^2+y^2=4, z=0$ and z=3.
- Calculate the eigen values and eigen vector of the matrix $\begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$ 23.
- 24. a) Prove that $abla^2\left(r^n
 ight)=n\,(n+1)r^{n-2}$ b)If $ar v=3x^2y^2z^4i\ +2x^3yz^4j\ +4x^3y^2z^3k\ show\ that\ ar v$ is a conservative field and find its scalar potential. $(10 \times 3 = 30)$