Reg.	No	Name

B. Sc. DEGREE END SEMESTER EXAMINATION OCTOBER 2017

SEMESTER - 3: PHYSICS (COMPLEMENTARY COURSE FOR MATHS)

COURSE: 15U3CPPHY5 – QUANTUM MECHANICS, SPECTROSCOPY, NUCLEAR PHYSICS, BASIC ELECTRONICS AND DIGITAL ELECTRONICS

For Regular (2016 Admission) & Supplementary / Improvement (2015 & 2014 Admission)

Time: Three Hours Max. Marks: 60

PART A

(Answer all questions. Each question carries 1 Mark)

- 1. What is Rayleigh-Jeans law? With which wavelength region of Black body spectrum does it agree the short or long?
- 2. Explain the term Eigen value equation in quantum mechanics.
- 3. The De-Broglie wavelength of an electron having kinetic energy 1000eV is......
- 4. Briefly explain nuclear magnetic moment-its cause and value. Does uncharged neutrons contribute to nuclear magnetic moment?
- 5. Represent the energy band diagram of p- n junction.
- 6. Why are stokes lines normally more intense?
- 7. What do you mean by voltage regulation in a rectifier? Give the expression.
- 8. The radius of a nucleus of mass number 232 and $R_0 = 1.2 \times 10^{-15} \,\mathrm{m}$ is.....
- 9. Give the relation connecting current gains α and β ?
- 10. Sketch the truth table of a NOR gate?

 $(1 \times 10 = 10)$

PART B

(Answer any seven questions. Each question carries 2 Marks)

- 11. State De-Morgans theorems.
- 12. What do you mean by a free particle in quantum mechanics? Write down the time independent Schrodinger equation for a free particle of mass m.
- 13. Distinguish between Zener and Avalanche break down.
- 14. What is photoelectric effect? How does quantum mechanics succeed in explaining the threshold frequency and absence of time lag in this effect.
- 15. What are the two new concepts introduced in vector atom model? Explain.
- 16. State the properties of nuclear force.
- 17. Explain the principle of negative feedback in amplifiers.
- 18. What do you mean by expectation value in quantum mechanics?
- 19. Explain the working of a Full adder.

 $(2 \times 7 = 14)$

PARTC (Problem/Derivations)

(Answer any *four* questions. Each question carries 4 Marks)

- 20. Elucidate the J values for a one electron system with l=3/2.
- 21. Determine the uncertainty in the position of an electron weighing 9 x 10^{-31} Kg moving with an uncertainty in the speed of 3 x 10^7 m/s.
- 22. Calculate the de-Broglie wavelength of waves associated with a particle moving with velocity 3/5 C.
- 23. Determine the time in which 1 gram of radium will disintegrate to 0.2 gram, if the half life is 1620 years.
- 24. The first line in the pure rotational spectrum of HCl appears at 21.18 cm⁻¹. Calculate bond length of the molecule. Atomic mass of H is 1.008 amu and Cl is 35.45 amu.
- 25. Construct a half adder and depict its truth table.

 $(4 \times 4 = 16)$

PART D (Essay)

(Answer two questions. Each question carries 10 Marks)

- 26. Elucidate the conditions for a well behaved wave function. Starting with time dependent Schrodinger equation, derive the time independent Schrodinger equation.
- 27. Discuss the nuclear stability on the basis of binding energy/mass number graph. Distinguish between Half life and mean life of a radioactive substance. Explain carbon dating.
- 28. With a neat diagrams, explain any two types of transistor biasing and describe the working of a common base transistor amplifier. Explain the output and input characteristics.
- 29. Describe Davisson –Germer experiment and how it established the concept of matter waves.

 $(10 \times 2 = 20)$
