M.Sc. DEGREE END SEMESTER EXAMINATION : NOVEMBER 2023

SEMESTER 1 : MATHEMATICS

COURSE : 21P1MATT03 : REAL ANALYSIS

Duration : Three Hou

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

(For Regular - 2023 Admission and Improvement/Supplementary -2022/2021 A	dmissions)
on : Three Hours	Max. Weights: 30
PART A	
Answer any 8 questions	Weight: 1
Prove that $\int_{a_{-}}^{b} f dlpha \leq \int_{a}^{b^{-}} f dlpha$	(U)
What is the Riemann-Stieltjes integral, and how does it differ from the Riemann integral?	(U)
Show by an example that a function of bounded variation need not be continuous.	(E, CO 1)
Find the radius of convergence of the series $x+rac{x^2}{2^2}+rac{2!}{3^2}x^3+rac{3!}{4^4}x^4+\dots$	(A)
Construct a continous function which is not of bounded variation.	(A, CO 1)
If $f_1, f_2 \in \mathscr{R}(lpha)$ on [a,b], then prove that $f_1 + f_2 \in \mathscr{R}(lpha)$ on $[a,b].$	(U, CO 2)
Prove that every uniformly convergent sequence of bounded functions is uniformly bounded.	(An, CO 1, CO 2)
Prove that $\lim_{x o 0}(1+x)^{1/x}=e.$	(A, CO 4)
If f is continuous on $[a, b]$ and if f' exists and is bounded in the interier, say $ f'(x) \le A$ for all x in (a, b) , then prove that f is of bounded variation o [a,b]	n (U, CO 1)
If $\{f_n\}$ and $\{g_n\}$ converges uniformly on a E, prove that $\{f_n+g_n\}$ converges uniformly on E.	(A)
	(1 x 8 = 8)
PART B	Materia - 0
Answer any 6 questions	Weights: 2
Determine the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{2n!}{\left(n!\right)^2} z^n$	(A, CO 4)
If f is continuous on [a,b], then prove that $f\in \mathscr{R}(lpha).$	(A, CO 1)
If f is a function defined on $[a, b]$, prove that f is of bounded variation or $[a, b]$ if and only if f can be expressed as the difference of two increasing functions.	
If f is monotonic on [a, b], and if α is continuous on [a, b], then prove that $f \in R(\alpha)$	(R, CO 2)
Find the total variation of the function $f(x)=\sin 2x$ over the interval $[0,2\pi].$	(An <i>,</i> CO 1)

Let α be monotonically increasing on [a,b]. Suppose $f_n \in \mathfrak{R}(\alpha)$ on [a,b], 16. for n=1,2,....and suppose $f_n \to f$ uniformly on [a,b]. Then prove that $f \in \mathfrak{R}(\alpha)$ on [a,b] and $\int_a^b f d\alpha = \lim_{n \to \infty} \int_a^b f_n d\alpha$ (R)

17.	Discuss the uniform convergece of f_n , where $f_n(x)=rac{1}{1+nx^2}$ for all $x\in [0,\infty)$	(A)
18.	Derive a relation between the Riemann-Stieltjes upper sums of a function corresponding to a partition and its refinement?	(E, CO 2) (2 x 6 = 12)
	PART C	
	Answer any 2 questions	Weights: 5
19.	Prove that the series $\sum rac{x^2+n}{n^2}$ converges uniformly in every bounded interval, but does not converge absolutely for any value of $x.$	(U, CO 3)
20.	a) Prove that every absolutely continuous function on $[a,b]$ is continuous and of bounded variation on $[a,b]$ b)Prove that f is absolutely continuous if it satisfies a uniform Lispschitz condition of order 1 on $[a,b]$	(R, CO 1)
21.	Suppose $f(x)f(y)=f(x+y)$ for all real x and y . Assuming f is continuous, prove that $f(x)=e^{cx}$, where c is constant.	(A, CO 4)
22.	Assume $lpha$ increases monotonically and $lpha'\in\mathfrak{R}$. Let f be a bounded real function on [a,b], then prove that $f\in\mathfrak{R}(lpha)$ if and only if $flpha'\in\mathfrak{R}$, In that case show that $\int_a^b fdlpha=\int_a^b f\Big(x\Big)lpha'\Big(x\Big)dx$	(R)
		(5 x 2 = 10)

OBE: Questions to Course Outcome Mapping

СО	Course Outcome Description	CL	Questions	Total Wt.
CO 1	Explain the functions of bounded variations, rectifiable curves, paths and equivalence of paths.	U	3, 5, 7, 9, 12, 13, 15, 20	15
CO 2	Illustrate the properties of Riemann-Stieljes integral.	An	6, 7, 14, 18	6
CO 3	Analyze the uniform convergence of a sequence of functions with continuity, integrability, differentiability.	An	19	5
CO 4	Apply the properties of power series to exponential, logarithmic and trigonometric functions.	А	8, 11, 21	8

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;