\qquad

M.Sc. DEGREE END SEMESTER EXAMINATION : NOVEMBER 2023
 SEMESTER 1 : MATHEMATICS
 COURSE : 21P1MATT03 : REAL ANALYSIS

(For Regular - 2023 Admission and Improvement/Supplementary -2022/2021 Admissions)
Duration : Three Hours
PART A
Answer any 8 questions

1. Prove that $\int_{a_{-}}^{b} f d \alpha \leq \int_{a}^{b^{-}} f d \alpha$
2. What is the Riemann-Stieltjes integral, and how does it differ from the Riemann integral?
3. Show by an example that a function of bounded variation need not be continuous.
4. Find the radius of convergence of the series
$x+\frac{x^{2}}{2^{2}}+\frac{2!}{3^{2}} x^{3}+\frac{3!}{4^{4}} x^{4}+\ldots . .$.
5. Construct a continous function which is not of bounded variation.
6. If $f_{1}, f_{2} \in \mathscr{R}(\alpha)$ on [a,b], then prove that $f_{1}+f_{2} \in \mathscr{R}(\alpha)$ on $[a, b]$.
(A, CO 1)
7. Prove that every uniformly convergent sequence of bounded functions is uniformly bounded.
(An, CO 1, CO
8. Prove that $\lim _{x \rightarrow 0}(1+x)^{1 / x}=e$.
9. If f is continuous on $[a, b]$ and if f^{\prime} exists and is bounded in the interier, say $\left|\mathrm{f}^{\prime}(\mathrm{x})\right| \leq \mathrm{A}$ for all x in (a, b), then prove that f is of bounded variation on [a,b]
10. If $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ converges uniformly on a E , prove that $\left\{f_{n}+g_{n}\right\}$ converges uniformly on E.
$(1 \times 8=8)$
PART B

Answer any 6 questions

Weights: 2
($\mathrm{A}, \mathrm{CO} 4$)
(A, CO 1)
12. If f is continuous on $[\mathrm{a}, \mathrm{b}]$, then prove that $f \in \mathscr{R}(\alpha)$.
13. If f is a function defined on $[a, b]$, prove that f is of bounded variation on $[a, b]$ if and only if f can be expressed as the difference of two increasing functions.
14. If f is monotonic on [a, b], and if α is continuous on [a, b], then prove that $f \in R(\alpha)$
15. Find the total variation of the function $f(x)=\sin 2 x$ over the interval $[0,2 \pi]$.
16. Let α be monotonically increasing on $[\mathrm{a}, \mathrm{b}]$. Suppose $f_{n} \in \mathfrak{R}(\alpha)$ on $[\mathrm{a}, \mathrm{b}]$, for $\mathrm{n}=1,2, \ldots$. and suppose $f_{n} \rightarrow f$ uniformly on $[\mathrm{a}, \mathrm{b}]$. Then prove that $f \in \mathfrak{R}(\alpha)$ on $[\mathrm{a}, \mathrm{b}]$ and $\int_{a}^{b} f d \alpha=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n} d \alpha$
17. Discuss the uniform convergece of f_{n}, where $f_{n}(x)=\frac{1}{1+n x^{2}}$ for all $x \in[0, \infty)$
18. Derive a relation between the Riemann-Stieltjes upper sums of a function corresponding to a partition and its refinement?
(E, CO 2)
($2 \times 6=12$)
PART C
Answer any 2 questions
Weights: 5
19. Prove that the series $\sum \frac{x^{2}+n}{n^{2}}$ converges uniformly in every bounded (U, CO 3) interval, but does not converge absolutely for any value of x.
20. a) Prove that every absolutely continuous function on $[a, b]$ is continuous and of bounded variation on [a,b]
b)Prove that f is absolutely continuous if it satisfies a uniform Lispschitz condition of order 1 on $[\mathrm{a}, \mathrm{b}]$
21. Suppose $f(x) f(y)=f(x+y)$ for all real x and y. Assuming f is continuous, prove that $f(x)=e^{c x}$, where c is constant.
(A, CO 4)
22. Assume α increases monotonically and $\alpha^{\prime} \in \Re$. Let f be a bounded real function on $[\mathrm{a}, \mathrm{b}]$, then prove that $f \in \mathfrak{R}(\alpha)$ if and only if $f \alpha^{\prime} \in \mathfrak{R}$, In that case show that $\int_{a}^{b} f d \alpha=\int_{a}^{b} f(x) \alpha^{\prime}(x) d x$
$(5 \times 2=10)$

OBE: Questions to Course Outcome Mapping

CO	Course Outcome Description	CL	Questions	Total Wt.
CO 1	Explain the functions of bounded variations, rectifiable curves, paths and equivalence of paths.	U	$3,5,7,9,12,13$, 15,20	15
CO 2	Illustrate the properties of Riemann-Stieljes integral.	An	$6,7,14,18$	6
CO 3	Analyze the uniform convergence of a sequence of functions with continuity, integrability, differentiability.	An	19	5
CO 4	Apply the properties of power series to exponential, logarithmic and trigonometric functions.	A	$8,11,21$	8

[^0]
[^0]: Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;

