M. Sc. DEGREE END SEMESTER EXAMINATION : NOVEMBER 2023

SEMESTER 1 : MATHEMATICS

COURSE : 21P1MATT02 : ALGEBRA

(For Regular - 2023 Admission and Improvement/Supplementary -2022/2021 Admissions)

Duration : Three Hours

Reg. No

	PART A	Woight, 1
	Answer any 8 questions	Weight: 1
1.	True or False: \mathbb{R} is not perfect. Justify your answer.	(U, CO 4)
2.	Find all $c\in \mathbb{Z}_3$ such that $\mathbb{Z}_3[x]/< x^3+x^2+c>$ is a field?	(A, CO 2)
3.	How many polynomials (including the zero polynomial) are there of degree ≤ 2 in $\mathbb{Z}_5[x]$?	(A, CO 2)
4.	Is $\mathbb{R}(i)$ the smallest subfield of $\mathbb C$ containing a zero of x^2+1 ? Justify your answer.	(U, CO 3)
5.	Show that $1+\sqrt{2}$ is an algebraic number.	(A, CO 3)
6.	Consider the evaluation homomorphism $\phi_5: \mathbb{Q}[x] o \mathbb{R}.$ Find six elements in the kernel of the homomophism $\phi_5.$	(A, CO 2)
7.	Define simple extension and algebraic extension of a field. Is every finite extension an algebraic extension?	(U, CO 3)
8.	What is the order of $G(\mathbb{Q}(\sqrt[3]{2}),i\sqrt{3})/\mathbb{Q}(\sqrt[3]{2}))$?	(An, CO 4)
9.	What are the possible numbers of Sylow 2-subgroups of a group of order 24?	(R, CO 1)
10.	Is every group of order 102 simple? Justify your answer.	(An, CO 1) (1 x 8 = 8)
	PART B	
	Answer any 6 questions	Weights: 2
11.	Find the degree and a basis of $\mathbb{Q}(\sqrt{2},\sqrt{3})$ over $\mathbb{Q}.$	(A, CO 3)
12.	Find the splitting field of x^3-2 over $\mathbb Q.$	(E, CO 4)
13.	Show that a group of order 48 is not simple.	(E, CO 1)
14.	Show that $x^4-22x+1$ is irreducible over $\mathbb Q.$	(E, CO 2)
15.	For the evaluation homomorphism $\phi_5:\mathbb{Z}_7[x] o\mathbb{Z}_7$, evaluate $\phi_5(3x^{106}+5x^{99}+2x^{53}).$	(E, CO 2)
16.	Show that $\mathbb{Q}(2^{1/2},2^{1/3})=\mathbb{Q}(2^{1/6})$	(E, CO 3)
17.	Show that if $lpha,eta\in\overline{F}$ are both separable over F , then $lpha\pmeta,lphaeta$, and $lpha/eta$, if $eta eq 0$, are all separable over F .	(An, CO 4)
18.	(a) State the fundamental theorem of Finitely generated abelian groups.	(A, CO 1)
	(b) Find all abelian groups upto isomorphism of order 720.	(2 x 6 = 12)

23P118

Max. Weights: 30

	PART C					
	Answer any 2 questions	Weights: 5				
19.	 (a). Show that if F is a field of prime characteristic p with algebraic closure F, then x^{pⁿ} - x has pⁿ distinct zeroes in F. (b). Show that if F is a field of prime characteristic p, then (α + β)^{pⁿ} = α^{pⁿ} + β^{pⁿ} for all α, β ∈ F and all positive integers n. 	(An, CO 3)				
20.	Show that every finite field is perfect.	(E, CO 4)				
21.	(a). Let X be a G-set. For $x_1, x_2 \in G$, let $x_1 \sim x_2$ if and only if there exists $g \in G$ such that $gx_1 = x_2$. Show that \sim is an equivalence relation on X. What is the equivalence class of $x \in X$ under this equivalence relation known as?					
	(b). Let X be a G-set. Show that $G_x = \{g \in G \mid gx = x\}$ is a subgroup of G for each $x \in X$. What is this subgroup known as? (c). Let G be a group of order p^n and let X be a finite G-set. Let $X_G = \{x \in X \mid gx = x \text{ for all } g \in G\}$. Show that $ X \cong X_G \pmod{p}$.	(E, CO 1)				
22.	(a). State and prove Eisenstein's criterion for irreducibility over \mathbb{Q} . (b). Show that the p^{th} cyclotomic polynomial is irreducible over \mathbb{Q} for any prime p .	(E, CO 2)				

OBE: Questions to Course	Outcome Mapping
---------------------------------	-----------------

СО	Course Outcome Description	CL	Questions	Total Wt.
CO 1	Develod ideas of finitely generated abelian groups, Sylow theorems and applications.	E	9, 10, 13, 18, 21	11
CO 2	Explain the concept of rings of polynomials, factorisation of polynomials and ideal structure.	E	2, 3, 6, 14, 15, 22	12
CO 3	Illustrate the idea of extension fields, algebraic extensions and geometric constructions.	E	4, 5, 7, 11, 16, 19	12
CO 4	Devrlop ideas of automorphisms of fields, isomorphism extension theorem and Galois theory.	E	1, 8, 12, 17, 20	11

(5 x 2 = 10)

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;