\qquad

B.Sc. DEGREE END SEMESTER EXAMINATION : NOVEMBER 2023
 SEMESTER 1 : COMPLEMENTARY MATHEMATICS FOR B.Sc. PHYSICS/CHEMISTRY COURSE : 19U1CPMAT1 : CALCULUS-1

(For Regular 2023 Admission and Improvement/Supplementary 2022/2021/2020/2019 Admissions)
Time : Three Hours
Max. Marks: 75

PART A

Answer any 10 (2 marks each)

1. Define local maximum and local minimum of a function $f(x, y)$ in a region R.
2. A pyramid $3 m$ high has a square base that is $3 m$ on a side. The cross-section of the pyramid perpendicular to the altitude $x m$ down from the vertex is a square $x m$ on a side. Find the volume of the pyramid.
3. State first derivative test for monotonic functions.
4. Evaluate f_{x}, f_{y}, and f_{z} if $f(x, y, z)=e^{-(x y z)}$.
5. Verify Rolle's theorem for the function $f(x)=\frac{x^{3}}{3}-3 x$ in the interval $[-3,3]$
6. State the stronger form of Fubini's theorem.
7. Evaluate f_{x} and f_{y} if $f(x, y)=\tan ^{-1}(y / x)$.
8. Find the volume of the torus (doughnut) generated by revolving a circular disk of radius a about an axis in its plane at a distance $b \geq a$ from its center.
9. Calculate $\iint f(x, y) d A$ for $f(x, y)=1-6 x^{2} y$ and $R: 0 \leq x \leq 2,-1 \leq y \leq 1$
10. Verify mean value theorem for the function $f(x)=x^{2}+2 x-1$, in the interval $[0,1]$
11. Let f be continuous on the symmetric interval $[-a, a]$. Show that $\int_{-a}^{a} f(x) d x=0$, if f is odd.
12. By converting to an equivalent polar integral integrate $f(x, y)=\frac{\ln \left(x^{2}+y^{2}\right)}{\sqrt{x^{2}+y^{2}}}$ over the region $1 \leq x^{2}+y^{2} \leq e$

PART B

Answer any 5 (5 marks each)

13. Find the lateral (side) surface area of the cone generated by revolving the line segment $y=x / 2,0 \leq y \leq 4$, about the x-axis.
14. Find the critical points of $f(x)=x^{3}-12 x-5$ and identify the intervals on which f is increasing and decreasing..
15. Find the volume of the solid generated by revolving each region enclosed by the triangle with vertices $(1,0),(2,1)$, and $(1,1)$ about the y-axis.
16. Verify that $w_{x y}=w_{y x}$ for the function $w=\ln (2 x+3 y)$.
17. Find the area of the region in the first quadrant that is bounded above by $y=\sqrt{x}$ and below by the x-axis and the line $y=x-2$ by integrating with respect to y.
18. Find the limits of integration for evaluating the triple integral of a function $F(x, y, z)=1$ over the tetrahedron D with vertices $(0,0,0),(1,1,0),(0,1,0)$, and $(0,1,1)$.
19. Find the extreme values of $V(x)=x(10-2 x)(16-2 x), 0<x<5$.
20. Find all the local maxima, local minima, and saddle points of the function $f(x, y)=\frac{1}{x^{2}+y^{2}-1}$.

PART C

Answer any 3 (10 marks each)

21. Use the theorems of Pappus to find the lateral surface area and the volume of a right circular cone.
22. Find the volume of the solid whose base is the region in the $x y$-plane that is bounded by the parabola $y=4-x^{2}$ and the line $y=3 x$, while the top of the solid is bounded by the plane $z=x+4$.
23. Find the extreme values of $f(x, y)=x y$ subject to the constraint $g(x, y)=x^{2}+y^{2}-10=0$.
24. State and prove Mean Value Theorem.
