\qquad

B. Sc. DEGREE END SEMESTER EXAMINATION : NOVEMBER 2023
 SEMESTER 1 : MATHEMATICS (COMMON FOR BSC CA/BCA) COURSE : 19U1CRCMT1/19U1CPCMT1 : FOUNDATION OF MATHEMATICS

(For Regular 2023 Admission and Improvement/Supplementary 2022/2021/2020/2019 Admissions)
Time : Three Hours
Max. Marks: 75
PART A

Answer any 10 (2 marks each)

1. What is the value of x after each of these statements is encountered in a computer program, if $x=1$ before the statement is reached?
a) if $x+2=3$ then $x:=x+1$
b) if $(x+1=3)$ OR $(2 x+2=3)$ then $x:=x+1$
2. If $U=\{2,4,6,8,10,12,14,16,18,20\}, A=\{4,6,10,12,18\}$ and $B=\{4,8,12,16,20\}$. Find the bit strings representing A and $A \cup B$.
3. Express the statements "Some student in this class has visited Mexico" and "Every student in this class has visited either Canada or Mexico" using predicates and quantifiers.
4. a) Define a lattice.
b) Give an example of a poset with five elements that is a lattice and an example of a poset with five elements that is not a lattice.
5. If $A=\{a, b, c\}$ and $B=\{1,2,3,4\}$. Find the number of functions from A into B and B into A.
6. Draw the graph of the polynomial function $f(x)=x^{2}-2 x-3$.
7. Find $\sum_{j \in S} j^{2}$ and $\sum_{j \in S} j$, where $S=\{1,3,5,7\}$.
8. Find the number of relations from $A=\{a, b, c, d\}$ to $B=\{x, y\}$.
9. Verify that 496 is a perfect number.
10. What is the composite of the relations R and S, where R is the relation from $\{1,2,3\}$ to $\{1$, $2,3,4\}$ with $R=\{(1,1),(1,4),(2,3),(3,1),(3,4)\}$ and S is the relation from $\{1,2,3,4\}$ to $\{0$, $1,2\}$ with $S=\{(1,0),(2,0),(3,1),(3,2),(4,1)\}$?
11. For any three integers, a, b, c, prove If $a \mid b$ and $a \mid c$, then $a \mid(b p+c q)$, for all integer values of p and q.
12. Let $A=\{a 1, a 2, a 3\}$ and $B=\{b 1, b 2, b 3, b 4, b 5\}$. Which ordered pairs are in the relation R represented by the matrix M_{R}
01000
10110
10101

PART B

Answer any 5 (5 marks each)

13. Let $A=\{a, b, c, d, e\}, B=\{1,2,3,4,5\}, C=\{0,4,7,8\}$. Consider the relations R from A to B and the relation S from B to C,defined by $R=\{(a, 2),(a, 5),(b, 3),(c, 1),(c, 3),(d, 5)\}$ and $S=\{(1,7),(2,0)$, $(2,7),(5,0),(5,4)\}$. Find the matrices M_{R}, M_{S} and $M_{S O R}$.
14. What are the terms $a_{0}, a_{1}, a_{2}, a_{3}$ of the $\{a n\}$ where $a_{n}=2^{n}+(-2)^{n}$
15. Show that set of all integers is countable.
16. Show that $n(n+1)(2 n+1)$ is divisible by 6 .
17. For any sets, Prove that $\mathrm{A}-\mathrm{B}=A \cap \bar{B}$
18. Show that there exist irrational numbers x and y such that $x y$ is rational.
19. Determine whether the relation R on the set reflexive, symmetric, antisymmetric and transitive, where of all Web pages is (a, b)e R If and only if
a) everyone who has visited Web page a has also visited Web page b.
b) there are no common links found on both Web page a and Web page b.
c) there is at least one common link on both Web page a and Web page b.
d) there is a Web page that includes links to both Web page a and Web page b.
20. a) Define a partial ordering.
b) Show that the divisibility relation on the set of positive integers is a partial order.
($5 \times 5=25$)

PART C

Answer any 3 (10 marks each)

21. Construct a truth table for each of these compound propositions.
a) $(p \vee q) \rightarrow(p \oplus q)$
b) $(p \oplus q) \rightarrow(p \wedge q)$
c) $(p \vee q) \oplus(p \wedge q)$
d) $(p \leftrightarrow q) \oplus(\neg p \leftrightarrow q)$
e) $(p \leftrightarrow q) \oplus(\neg p \leftrightarrow \neg r)$
22. a) Define the floor and ceiling functions and display the graphs of these functions.
b) Prove that if x is a real number, then $[2 x]=[x]+[x+1 / 2]$.
23. Draw the Hasse diagram for the partial ordering $\{(A, B) \mid A \subseteq B\}$ on the power set $P(S)$ where $S=\{a, b, c\}$.
24. Prove that $3^{2 n+1}+2$ is divisible by 7 .
