\qquad

M. Sc. DEGREE END SEMESTER EXAMINATION : NOVEMBER 2023
 SEMESTER 3 : MATHEMATICS
 COURSE : 21P3MATT15 : MULTIVARIATE CALCULUS
 (For Regular - 2022 Admission and Supplementary - 2021 Admission)

Duration : Three Hours
Max. Weights: 30
PART A

Answer any 8 questions
Weight: 1
(A, CO 1)
(A, CO 2)
(A, CO 1)
($\mathrm{U}, \mathrm{CO} 4$)
(An, CO 4)
(R, CO 3)
(A, CO 1)
(U, CO 4)
(A, CO 2)
($\mathrm{R}, \mathrm{CO} 3$) (1 $\times 8=8$)

PART B

Answer any 6 questions
Weights: 2
(An, CO 4)
(A, CO 2)
(An, CO 3)
(A, CO 3)
(An, CO 4)
15. Find $J_{f}(r, \theta, z)$ where $f(r, \theta, z)$ is defined by $x=r \cos \theta, y=r \sin \theta, z=z$
16. Find the gradient vector $\nabla f(x, y, z)$ at the point $(1,0,1)$ of the function $f(x, y, z)=3 x^{3}+y^{4}+z^{5}$.
17. Derive the exponential form of the Fourier Integral Theorem.
(A, CO 2)
(A, CO 1)
18. Prove that $\frac{x^{2}}{2}=\pi x-\frac{\pi^{2}}{3}+2 \sum_{n=1}^{\infty} \frac{\cos n x}{n^{2}}$ if $0 \leq x \leq 2 \pi$.
(A, CO 1)
($2 \times 6=12$)
PART C
Answer any 2 questions

Weights: 5

(A, CO 1)
19. State and prove Fourier Integral theorem.
20. Assume that one of the partial derivatives $D_{1} \mathbf{f}, \ldots, D_{n} \mathbf{f}$ exists at \mathbf{c} and that the remaining $n-1$ partial derivatives exists in some open ball and are continuous at \mathbf{c}. Then show that \mathbf{f} is differentiable at \mathbf{c}.
21. Suppose E is an open set in R^{n}, T is a C^{\prime}-mapping of E into an open set $V \subset R^{m}$. Let ω and λ be k - and m-forms in V respectively. Then prove that
(a) $(\omega+\lambda)_{T}=\omega_{T}+\lambda_{T}$ if $k=m$;
(An, CO 4)
(b) $(\omega \wedge \lambda)_{T}=\omega_{T} \wedge \lambda_{T}$;
(c) $d\left(\omega_{T}\right)=(d \omega)_{T}$ if ω is of class C^{\prime} and T is of class $C^{\prime \prime}$.
22. Assume that g is differentiable at a, with total derivative $g^{\prime}(a)$. Let $b=g(a)$ and assume that f is differentiable at b, with total derivative $f^{\prime}(b)$. Then prove that the composite function $h=f \circ g$ is differentiable at a, and the total derivative $h^{\prime}(a)$ is given by $h^{\prime}(a)=f^{\prime}(b) \circ g^{\prime}(a)$, the composition of the linear functions $f^{\prime}(b)$ and $g^{\prime}(a)$.

OBE: Questions to Course Outcome Mapping

CO	Course Outcome Description	CL	Questions	Total Wt.
CO 1	Explain Weirstras theorem, otherforms of Fourierseries, the Fourier integral theorem, the exponential form of the Fourier integral theorem, integral transforms and convolutions, the convolution theorem for Fourier transforms.	A	$\begin{aligned} & 1,3,7,17 \\ & 18,19 \end{aligned}$	12
CO 2	Analyze Multivariable Differential Calculus The directional derivative, directional derivatives and continuity, the total derivative, the total derivative expressed in terms of partial derivatives, An application of the complex-valued functions, the matrix of a linear function, the Jacobian matrix, the chain rate matrix form of the chain rule.	A	$\begin{aligned} & 2,9,12, \\ & 16,22 \end{aligned}$	11
CO 3	Interpret Implicit functions and extremum problems, the mean value theorem for differentiable functions, a a sufficient condition for differentiability.	An	$\begin{aligned} & 6,10,13 \\ & 14,20 \end{aligned}$	11
CO 4	Explain the Integration of Differential Forms, primitive mappings, partitions of unity, change of variables, differential forms, and Stoke's theorem.	An	$\begin{aligned} & 4,5,8,11 \\ & 15,21 \end{aligned}$	12

[^0]
[^0]: Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;

