Reg. No

23P364

M. Sc. DEGREE END SEMESTER EXAMINATION : NOVEMBER 2023

SEMESTER 3 : MATHEMATICS

COURSE : 21P3MATT15 : MULTIVARIATE CALCULUS

(For Regular - 2022 Admission and Supplementary - 2021 Admission)

Duration : Three Hours

Max. Weights: 30

(A, CO 1)

		0				
	PART A Answer any 8 questions	Weight: 1				
1.	State Convolution theorem for Fourier transforms.	(A, CO 1)				
2.	Let $f:R^2 o R^3$ be defined by the equation					
	$f(x,y) = (\sin x \cos y, \sin x \sin y, \cos x \cos y)$. Determine the Jacobian matrix.	(A, CO 2)				
3.	Find the Laplace transform of $f(x)=\cos ax$	(A, CO 1)				
4.	Define basic k-forms.	(U, CO 4)				
5.	Define the term primitive mapping.	(An <i>,</i> CO 4)				
6.	Define saddle point.	(R, CO 3)				
7.	State the exponential form of Fourier series.	(A, CO 1)				
8.	Find the number of basic k-forms in $\mathbb{R}^n.$	(U <i>,</i> CO 4)				
9.	Show that the components of $f^\prime(c)$ are the dot product of the successive rows of the Jacobian matrix with the vector $v.$	(A, CO 2)				
10.	Define stationary points.	(R, CO 3) (1 x 8 = 8)				
	PART B					
	Answer any 6 questions	Weights: 2				
11.	Show that $\int\limits_{T\phi}\omega=\int\limits_{\phi}\omega_{T}.$	(An, CO 4)				
12.	If f is differentiable at c , then prove that f is continuous at c .	(A, CO 2)				
13.	Examine the function x^3+y^3-3axy for maxima and minima.	(An, CO 3)				
14.	Verify that the mixed partial derivatives $D_{1,2}{f f}$ and $D_{2,1}{f f}$ are equal where ${f f}(x,y)= an(x^2/y), y eq 0.$	(A, CO 3)				
15.	Find $J_f(r, heta,z)$ where $f(r, heta,z)$ is defined by $x=rcos heta,y=rsin heta,z=z$	(An, CO 4)				
16.	Find the gradient vector $ abla f(x,y,z)$ at the point $(1,0,1)$ of the function $f(x,y,z)=3x^3+y^4+z^5.$	(A, CO 2)				
17.	Derive the exponential form of the Fourier Integral Theorem.	(A, CO 1)				
18.	Prove that $rac{x^2}{2}=\pi x-rac{\pi^2}{3}+2\sum\limits_{n=1}^{\infty}rac{\cos nx}{n^2}$ if $0\leq x\leq 2\pi.$	(A, CO 1)				
		(2 x 6 = 12)				
PART C						
	Answer any 2 questions	Weights: 5				

19. State and prove Fourier Integral theorem.

20.	Assume that one of the partial derivatives $D_1 {f f}, \ldots, D_n {f f}$ exists at ${f c}$ and that the remaining $n-1$ partial derivatives exists in some open ball and are continuous at ${f c}$. Then show that ${f f}$ is differentiable at ${f c}$.	(An, CO 3)
21.	Suppose E is an open set in R^n,T is a C' -mapping of E into an open set $V\subset R^m.$ Let ω and λ be k - and m - forms in V respectively. Then prove that	
	that (a) $(\omega + \lambda)_T = \omega_T + \lambda_T$ if $k = m$; (b) $(\omega \wedge \lambda)_T = \omega_T \wedge \lambda_T$; (c) $d(\omega_T) = (d\omega)_T$ if ω is of class C' and T is of class C'' .	(An, CO 4)
22.	Assume that g is differentiable at a, with total derivative $g'(a)$. Let $b = g(a)$ and assume that f is differentiable at b, with total derivative $f'(b)$. Then prove that the composite function $h = f \circ g$ is differentiable at a, and the total derivative $h'(a)$ is given by $h'(a) = f'(b) \circ g'(a)$, the composition of the linear functions $f'(b)$ and $g'(a)$.	(A, CO 2)
	3 (~).	(5) (0)

(5 x 2 = 10)

OBE: Questions to Course Outcome Mapping

СО	Course Outcome Description	CL	Questions	Total Wt.
CO 1	Explain Weirstras theorem, otherforms of Fourierseries, the Fourier integral theorem, the exponential form of the Fourier integral theorem, integral transforms and convolutions, the convolution theorem for Fourier transforms.	A	1, 3, 7, 17, 18, 19	12
CO 2	Analyze Multivariable Differential Calculus The directional derivative, directional derivatives and continuity, the total derivative, the total derivative expressed in terms of partial derivatives, An application of the complex- valued functions, the matrix of a linear function, the Jacobian matrix, the chain rate matrix form of the chain rule.	A	2, 9, 12, 16, 22	11
CO 3	Interpret Implicit functions and extremum problems, the mean value theorem for differentiable functions, a a sufficient condition for differentiability.	An	6, 10, 13, 14, 20	11
CO 4	Explain the Integration of Differential Forms, primitive mappings, partitions of unity, change of variables, differential forms, and Stoke's theorem.	An	4, 5, 8, 11, 15, 21	12

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;