Reg. No

23P352

M.Sc. DEGREE END SEMESTER EXAMINATION : NOVEMBER 2023

SEMESTER 3 : MATHEMATICS

COURSE : 21P3MATT14 : ADVANCED COMPLEX ANALYSIS

(For Regular - 2022 Admission and Supplementary - 2021 Admission)

Duration : Three Hours

Max. Weights: 30

	PART A Answer any 8 questions	Weight: 1
1.	State and prove the functional equation.	(A)
2.	State Mittag-Leffler's theorem.	(R)
3.	Show that an analytic function whose real part is constant must itself be a constant.	(A, CO 3)
4.	Let <i>G</i> be an open connected subset of (<i>C</i>). Then tshow that if <i>G</i> is simply connected, then $n(\gamma; a) = 0$ for every closed rectifiable curve γ in <i>G</i> and every point <i>a</i> in <i>C</i> – <i>G</i>	(U, CO 2)
5.	State Hadamard factorization theorem.	(E)
6.	State Reimann mapping theorem.	(A)
7.	State Jensen's Formula.	(R, CO 4)
8.	Find the order of the functions $a)\sin(z) b)\cosh\sqrt{z}$	(A, CO 4)
9.	Let G be an open connected subset of C. For any f in $H(G)$ there is a sequence of polynomials that converges to f in $H(G)$ then show that for any f in $H(G)$ and any closed rectifiable curve γ in G , $\int_{\gamma} f = 0$	(A, CO 2)
10.	Show that if u is harmonic then show that so are u_x and u_y	(An, CO 3) (1 x 8 = 8)
	PART B	
	Answer any 6 questions	Weights: 2
11.	State and prove Maximum Principle (secondVersion).	(U, CO 3)
12.	Show that C and $D = \{z \mid z \mid \le 1\}$ are homeomorphic.	(A, CO 2)
13.	Let $Rez_n \leq -1$; then the series $\sum_{n=1}^{\infty} log(1 + z_n)$ converges absolutely iff the series $\sum_{n=1}^{\infty} z_n$ converges absolutely.	(E)
14.	Let G be an open connected subset of C. If for any f in $H(G)$ such that $f(z) \neq 0$ for all z in G there is a function g in $H(G)$ such that $f(z) = [g(z)]^2$, then show that If $u: G \longrightarrow R$ is harmonic then there is a harmonic function $v: G \longrightarrow R$ such that $f = u + iv$ is analytic on G	(U)
15.	Let <i>f</i> be an analytic function on a region containing $B(0, r)$ and suppose that a_1, \ldots, a_n are the zeros of <i>f</i> in $B(0; r)$ repeated according to multiplicity. If $f(0) \neq 0$ then $\log f(0) = -\sum_{k=1}^n \log(\frac{r}{ a_k }) + \frac{1}{2\pi} \int_0^{2\pi} \log f(re^{i\theta} d\theta)$	(R, CO 4)

16.	State and prove Bohr Mollerup Theorem.	
		(U)
17.	State and prove Euler'stheorem.	(U)
18.	If $\mathbf{f}(\mathbf{z}) = \mathbf{u} + \mathbf{i}\mathbf{v}$ is a regular function of z in a domain D , then show that $\nabla^2 \mathbf{f}(\mathbf{z}) ^2 = 4 \mathbf{f}'(\mathbf{z}) ^2$	(An, CO 3)
		(2 x 6 = 12)
	PART C	
	Answer any 2 questions	Weights: 5
19.	Show that f is analytic on D iff $\int_{-\pi}^{\pi} f(e^{it})e^{int}dt = 0$ for all $n \ge 1$.	(A)
20.	State and prove Runge's theorem.	(An, CO 2)
21.	Let $\prod_{n=1}^{\infty} X_n, d$), is a metric space. If $\zeta^k = \{x_n^k\}_{n=1}^{\infty}$ is in $\prod_{n=1}^{\infty} X_n$, then	
	prove that $\xi^k \longrightarrow \xi = \{x_n\}$ iff $x_n^k \longrightarrow x_n$ for each <i>n</i> . Also show that if each	(R)
	(X_n, d_n) is compact then X is compact.	
22.	Show that $H(G)$ is a complete metric space.	(A)

(A)

(5 x 2 = 10)

OBE: Questions to Course Outcome Mapping

СО	Course Outcome Description	CL	Questions	Total Wt.
CO 1	Explain the space of functions, Riemann mapping theorem and Weierstrass factorization theorem.	U	22	5
CO 2	Analyze Runge's Theorem, Simple connectedness, MittagLeffler's theorem, Analytic continuation and Riemann surfaces, Schwartz Reflection Principle, Analytic continuation along a path, Mondromy theorem.	An	4, 9, 12, 20	9
CO 3	Interpret Harmonic functions, Basic properties of harmonic functions and Harmonic functions on the disk.	U	3, 10, 11, 18	6
CO 4	Perceive Entire functions, Jensen's formula, the genus and order of an entire function, Hadamard Factorization theorem.	U	7, 8, 15	4

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;