23P337

M Sc. DEGREE END SEMESTER EXAMINATION : NOVEMBER 2023

SEMESTER 3 : MATHEMATICS

COURSE : 21P3MATT13 : ADVANCED TOPOLOGY

(For Regular - 2022 Admission and Supplementary - 2021 Admission)

Duration : Three Hours

Max. Weights: 30

		8
	PART A Answer any 8 questions	Weight: 1
1.	Let $X^+=XU\{\infty\}$ be the one point compactification of the space $X.$ If X is compact, prove that $\{\infty\}$ is open in $X^+.$	()
2.	Prove that T_2 axiom is a productive property.	()
3.	Define base and sub base of a filter on a set X.	(Cr)
4.	If a topological space is embeddedable into a cube, prove that the space is Tychonoff.	()
5.	If every net in a space X can converge to any point in it, then prove that X is indiscrete.	()
6.	State Urysohn's Lemma.	(An)
7.	Define σ - locally finite family in a topological space.	()
8.	If a space X is Hausdorff, prove that no filter on X can converge to more than one point in it.	()
9.	Is ${\mathbb R}$ locally compact? Justify.	()
10.	Define a filter associated with a net S in X .	() (1 x 8 = 8)
	PART B	
	Answer any 6 questions	Weights: 2
11.	Prove that a topological product is regular iff each co-ordinate space is regular.	()
12.	Prove that a space X is connected if and only if each co-ordinate space is so	(U)
13.	Prove that a first countable, countably compact space is sequentially compact.	()
14.	Give an example of a space which is second countable and T_2 but not metrisable.	()
15.	Prove that a space X is compact iff every filter on X has a cluster point in X .	()
16.	Prove that open subspace of a locally compact, regular space is locally compact.	()
17.	Prove that the evaluation function is 1 - 1 if and only if f_i distinguishes points and that the evaluation function is continuous iff each f_i is continuous.	(R)
18.	Define co-final subset of a directed set. Suppose $S:D o X$ is a net and F is a co-final subset of $S.$ If $S/F:F o X$ converges to a point x in X ,	()
	then prove that x is a cluster point of S .	$(2 \times 6 - 12)$
		(2 x 6 = 12)

	PART C	
	Answer any 2 questions	Weights: 5
19.	Let $S:D o X$ be a net and ${\mathcal F}$ the filter associated with it. Let $x\in X$. Prove that	
	a. S converge to x as a net iff ${\cal F}$ converges to x as a filter. b. x is a cluster point of the net S iff x is a cluster point of the filter ${\cal F}$	()
20.	If the product space is non-empty, prove that each co-ordinate space is embeddable in it and hence prove that if a topological product is T_0, T_1, T_2 or regular, then each co-ordinate space has the corresponding property.	()
21.	Prove that a space second countable T_3 space if and only if it is embeddable in a Hilbert $$ cube.	(U)
22.	Prove that a subspace of a locally compact, Hausdorff space is locally compact iff it is open in its closure.	() (5 x 2 = 10)

OBE: Questions to Course Outcome Mapping

CO Course Outcome Description	CL	Questions	Total Wt.
-------------------------------	----	-----------	-----------

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;