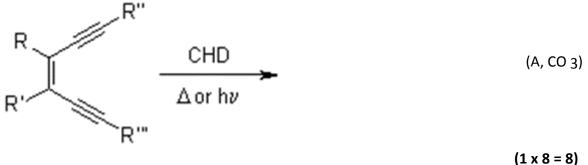
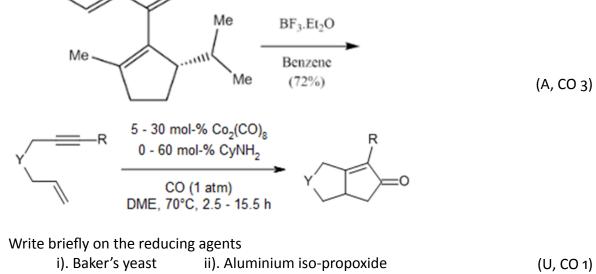
Reg. No


M. Sc. DEGREE END SEMESTER EXAMINATION : NOVEMBER 2023 SEMESTER 3 : CHEMISTRY / PHARMACEUTICAL CHEMISTRY COURSE : 21P3CHET10 / 21P3CPHT10 : ORGANIC SYNTHESES

(For Regular - 2022 Admission and Supplementary - 2021 Admission)


Duration : Three Hours

PART A **Answer any 8 questions** Weight: 1 (A, CO 4) Explain how1,3-dithianes helps in the protection of a carbonyl group. 1. What are synthons and synthetic equivalents? () 2. 3. Disconnect 1-phenyl-1-propanone and show the synthons and corrsponding () synthetic equivalents. Write the product and explain the reaction. 4. Me AlK KMnO4 (U, CO 1) Н Write briefly on the design principles for a receptor. (U, CO 4) 5. What are the advantages of solid phase peptide synthesis (SPPS) over 6. (U, CO 4) solution phase peptide synthesis? Write the product and explain the reaction. 7. PCC, Al_2O3 (A, CO 1) PhCH=CH-CH₂OH ? C_6H_{14} , 2Hrs 8. Apply retrosynthetic analysis and suggest a suitable synthesis of the following target molecule. .CHO () Explain the use of DCC in peptide coupling reactions?: 9. (E, CO 2) Explain the mechanism of the following reaction. 10.

Max. Weights: 30

	PART B	
	Answer any 6 questions Weigh	nts: 2
11.	With the help of protecting group chemistry suggest a synthetic strategy for the conversion of (S)-2-formyl-3-hydroxypropanoic acid into (R)-2-formyl-3-hydroxypropanoic acid.	(Cr)
12.	Explain McMurray coupling with mechanism.	(U, CO 1)
13.	Give an example with mechanism of a coupling reaction involving transmetallation with Cu(I) catalyst?	(R, CO 2)
14.	Discuss the mechanism and synthetic applications of MPV reduction.	(U, CO 1)
15.	Predict the structures of A, B and C in the following reactions.	
	$H_{3}C \longrightarrow OH \xrightarrow{TBDMSCI (1 equiv.)} A \xrightarrow{CrO_{3}.Py_{2}} B \xrightarrow{TBAF} C$	(•
		(A <i>,</i> CO 4)
	$ \begin{array}{c} O & O \\ \hline \\ OCH_3 \end{array} \xrightarrow{HOCH_2CH_2OH} A \xrightarrow{LiAlH_4} B \xrightarrow{H_2O/H^+} C $	
16.	Discuss the basic principles and terminology of retrosynthetic analysis.	()
17.	Write any two methods for the synthesis of 5-membered ring compounds.	(U,
•		CO 3)
18.	How will you synthesize the following from iodo benzene?	
	OMe	(A, CO 2)
	(2 x 6	= 12)
	PART C	
	Answer any 2 questions Weigh	nts: 5
19.	Explain the mechanism of the following reactions.	
	TMS	

iv). NaBH₃CN

20.

iii). NaBH₄

21.	Discuss the different interactions and types of receptors in supramolecular chemistry.	(U, CO 4)
22.	Write an essay on metal mediated C-C and C-X coupling reactions with reference to a) Negishi Sonogashira b) Stille Coupling c) Nozaki-Hiyama reaction.	(R, CO 2)
		(5 x 2 = 10)

OBE: Questions to Course Outcome Mapping

со	Course Outcome Description	CL	Questions	Total Wt.
CO 1	Describe the applications of oxidation and reduction techniques in organic syntheses.	А	4, 7, 12, 14, 20	11
CO 2	Illustrate modern synthetic methods and applications of reagents.	U	9, 13, 18, 22	10
CO 3	Explain different methods for the construction of carbocyclic and heterocyclic ring systems.	U	10, 17, 19	8
CO 4	Understand the principles and applications of protecting groups in chemistry.	U	1, 5, 6, 15, 21	10

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;