23U546

B. Sc. DEGREE END SEMESTER EXAMINATION : NOVEMBER 2023

SEMESTER 5 : COMPUTER APPLICATION

COURSE : 19U5CRCMT6 : MATHEMATICAL ANALYSIS

(For Regular 2021 Admission and Supplementary 2020/2019 Admissions)

Time : Three Hours

Max. Marks: 75

PART A Answer any 10 (2 marks each)

- 1. Show that the set $S = \{x/0 < x < 1, x \in R\}$ is open but not closed.
- 2. Find the supremum and infimum of $\Big\{1+rac{(-1)^n}{n};\ n\in\mathbb{N}\Big\}.$
- 3. (a) Define upperbound of a set S (b) Find the supremum of the set $\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$
- 4. Sketch the set of points determined by |z 1 + i| = 1.
- 5. a) Define deleted neighbourhood of a point with an example.b) Give an example of a set which is neither open nor closed.
- 6. Verify that (2-3i)(-2+i)=-1+8i.
- 7. Show that if a set S is bounded then so is its closure \tilde{s} .
- 8. State the equivalence of two forms of Completeness property of real numbers.
- 9. Show that the sequence $\{S_n\}$, where $S_n=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{3}+\ldots+\frac{1}{n}$ cannot converge.
- 10. Represent the complex number $z=1+i\sqrt{3}$ in exponential form.
- 11. Show that $\lim_{n \to \infty} rac{3+2\sqrt{n+1}}{\sqrt{n+1}} = 2.$
- 12. a) State Cauchy's first theorem on limits.b) Give an example to show that converse of Cauchy's first theorem on limits is not true.

 $(2 \times 10 = 20)$

PART B Answer any 5 (5 marks each)

- 13. If a sequence $\{a_n\}$ of positive terms converges to a positive limit l,then so does the sequences $\{(a_1a_2a_3,\ldots,a_n)^{1/n}\}$ of its geometric means.
- ^{14.} Find $(1)^{1/3}$.
- 15. Show that if **R** is order complete, then it has Dedekind's property.
- 16. (a) Reduce $\frac{1+2i}{3-4i} + \frac{2-i}{5i}$ into real number (b) Write -1 - i in polar form
- 17. Prove that the derived set of a set is closed.
- 18. Prove that every bounded infinite set has the smallest and greatest limit points.

- 19. Let $A,B \subseteq \mathbf{R}$ such that $A \subseteq B$. Show that $Sup A \leq Sup B$
- 20. Show that the sequence {S_n}, where $S_n = \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$, $\forall n \in \mathbb{N} \text{ is convergent.}$ (5 x 5 = 25)

PART C Answer any 3 (10 marks each)

- 21. (a) Show that the real number field is Archimedean.(b) Prove that every open interval (a,b) contains a rational number.
- 22. a) If {a_n} be a sequence, such that lim a_n = 1, where |l| < 1, then prove that lim a_n = 0.
 b) Prove that a monotonic sequence is convergent if and only if it is bounded.
- a) Prove that every bounded infinite set has the smallest and greatest limit pointsb) Prove that closure of a bounded set is bounded
- 24. Show that the

sequences
$$\{a_n^{1/n}\}$$
 and $\{b_n^{1/n}\}$ where (i) $a_n = \frac{(3n)!}{(n!)^3}$ and (ii) $b_n = \frac{n^n}{(n+1)(n+2)\dots(n+n)}$ converge and hence find their limits.

 $(10 \times 3 = 30)$