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PART A
Answer any 10 (2 marks each)

1. Show that if  is a ring, then for any . 

2. Define commuta�ve binary operaton.

3. Define projec�on map on the direct product of groups.

4. Define proper subgroup of a group.

5. Define a conjugate subgroup of a subgroup.

6. Define simple group.

7. Define  permuta�on on a set.

8. Find the number of elements in the set .

9. True or false: every func�on is permuta�on if and only if it is  one to one. Jus�fy.

10. Define order of an element.

11. Show that there is no zero divisor in , where  is a prime.

12. Define unit element of a ring.

PART B
Answer any 5 (5 marks each)

13. Prove that direct product of the groups is a group.

14. Let  be a posi�ve integer and let  be rela�vely prime to . Show that for each
, the equa�on  has a unique solu�on in . 

15. Show that .

16. Prove that every cyclic group is abelian.

17. Let  be a ring with unity. Show that if  for some natural number , then the
smallest such integer  is the characteris�c of .

18. Prove that the group homomorphism   is a one to one map if and only  if
Ker .

19. Show that  defined on  by  makes  an abelian group.

20.
Show that the group  is cyclic if and only if the numbers  are rela�vely primes in

pairs.
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PART C
Answer any 3 (10 marks each)

21. Compute the maximum possible order of an element in .

22. Let  be any subset of a group . Show that  is a

subgroup of . Hence show that the center of  is an abelian group.

23. State and prove fundamental homomorphism theorem.

24. Let  be a ring with . Prove that  is a commuta�ve ring. 
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