MSc.DEGREE END SEMESTER EXAMINATION: NOVEMBER 2023 SEMESTER 3: MATHEMATICS

COURSE: 21P3MATT11: PARTIAL DIFFERENTIAL EQUATIONS

(For Regular - 2022 Admission and Supplementary - 2021 Admission)

Duration : Three Hours Max. Weights: 30

PART A

PART A Answer any 8 questions Weight: 1					
1.	Find the complete integral of $p+q=pq$.	(A, CO 2)			
2.	Show that the pdes $z=px_1+qx_2$ and $f(x_1,x_2,z,p,q)=0$ are compatible if $f(x_1,x_2,z,p,q)=0$ is homogeneous in x_1,x_2,z .	(A, CO 2)			
3.	Form pde by eliminating arbitrary function $z=x_1+x_2+F(x_1x_2).$	(A, CO 1)			
4.	State Dirichlet problem for a rectangle.	(R, CO 4)			
5.	Solve $(D^3 - 2D^2D' - DD'^2 + 2D'^3)z = 0.$	(A, CO 3)			
6.	Solve $(2D - D' + 4)(D + 2D' + 1)z = 0$.	(A, CO 3)			
7.	Find the complete integral of $(p+q)(z-px_1-qx_2)=1.$	(A, CO 2)			
8.	Classify the pde as elliptic, hyperbolic or parabolic $z_{xx}+z_{yy}=0.$	(U, CO 4)			
9.	Find the first order pde satisfied by the homogeneous function $f(x_1,x_2)$ of x_1 and x_2 of degree n .	(A, CO 1)			
10.	Let $v=v(x_1,x_2)$ be a known function of x_1,x_2 and $u=H(v)$ be a function of v alone not involving x_1,x_2 explicitly and H has continuous first order derivatives. Find the first order pde.	(An, CO 1)			
	mst order derivatives. This the mst order pae.	$(1 \times 8 = 8)$			
PART B					
	Answer any 6 questions	Weights: 2			
11.		Weights: 2 (A, CO 1)			
11. 12.	Answer any 6 questions Show that the equation $(x_2x_3)dx_1+(2x_1x_3)dx_2+(-3x_1x_2)dx_3=0$	(A, CO 1)			
	Answer any 6 questions Show that the equation $(x_2x_3)dx_1+(2x_1x_3)dx_2+(-3x_1x_2)dx_3=0$ is integrable and find the integral. Let $\alpha_r D+\beta_r D'+\gamma_r$ is a factor of $F(D,D')$ and $\phi_r(\xi)$ is an arbitrary function of the variable ξ . Prove that if $\alpha_r \neq 0, u_r = \exp(\frac{-\gamma_r x}{\alpha_r})\phi_r(\beta_r x - \alpha_r y)$ is a solution of the equation	_			
12. 13.	Answer any 6 questions Show that the equation $(x_2x_3)dx_1+(2x_1x_3)dx_2+(-3x_1x_2)dx_3=0$ is integrable and find the integral. Let $\alpha_rD+\beta_rD'+\gamma_r$ is a factor of $F(D,D')$ and $\phi_r(\xi)$ is an arbitrary function of the variable ξ . Prove that if $\alpha_r\neq 0, u_r=\exp(\frac{-\gamma_rx}{\alpha_r})\phi_r(\beta_rx-\alpha_ry)$ is a solution of the equation $F(D,D')z=0$. Show that the equations $p^2+q^2-1=0, (p^2+q^2)x_1-pz=0$ are compatible and find a one parameter family of common solutions.	(A, CO 1)			
12.	Answer any 6 questions Show that the equation $(x_2x_3)dx_1+(2x_1x_3)dx_2+(-3x_1x_2)dx_3=0$ is integrable and find the integral. Let $\alpha_rD+\beta_rD'+\gamma_r$ is a factor of $F(D,D')$ and $\phi_r(\xi)$ is an arbitrary function of the variable ξ . Prove that if $\alpha_r\neq 0, u_r=\exp(\frac{-\gamma_rx}{\alpha_r})\phi_r(\beta_rx-\alpha_ry)$ is a solution of the equation $F(D,D')z=0$. Show that the equations $p^2+q^2-1=0, (p^2+q^2)x_1-pz=0$ are	(A, CO 1)			
12. 13.	Show that the equation $(x_2x_3)dx_1+(2x_1x_3)dx_2+(-3x_1x_2)dx_3=0$ is integrable and find the integral. Let $\alpha_rD+\beta_rD'+\gamma_r$ is a factor of $F(D,D')$ and $\phi_r(\xi)$ is an arbitrary function of the variable ξ . Prove that if $\alpha_r\neq 0, u_r=\exp(\frac{-\gamma_rx}{\alpha_r})\phi_r(\beta_rx-\alpha_ry)$ is a solution of the equation $F(D,D')z=0$. Show that the equations $p^2+q^2-1=0, (p^2+q^2)x_1-pz=0$ are compatible and find a one parameter family of common solutions. Let $z=F(x_1,x_2,a)$ be a one parameter family of solutions of the pde $f(x_1,x_2,z,p,q)=0$. Then prove that the envelope of this one parameter	(A, CO 1) (A, CO 3) (An, CO 2)			
12. 13. 14.	Show that the equation $(x_2x_3)dx_1+(2x_1x_3)dx_2+(-3x_1x_2)dx_3=0$ is integrable and find the integral. Let $\alpha_rD+\beta_rD'+\gamma_r$ is a factor of $F(D,D')$ and $\phi_r(\xi)$ is an arbitrary function of the variable ξ . Prove that if $\alpha_r\neq 0, u_r=\exp(\frac{-\gamma_rx}{\alpha_r})\phi_r(\beta_rx-\alpha_ry)$ is a solution of the equation $F(D,D')z=0$. Show that the equations $p^2+q^2-1=0, (p^2+q^2)x_1-pz=0$ are compatible and find a one parameter family of common solutions. Let $z=F(x_1,x_2,a)$ be a one parameter family of solutions of the pde $f(x_1,x_2,z,p,q)=0$. Then prove that the envelope of this one parameter family if it exists is also a solution of the pde.	(A, CO 1) (A, CO 3) (An, CO 2)			
12.13.14.15.	Show that the equation $(x_2x_3)dx_1+(2x_1x_3)dx_2+(-3x_1x_2)dx_3=0$ is integrable and find the integral. Let $\alpha_rD+\beta_rD'+\gamma_r$ is a factor of $F(D,D')$ and $\phi_r(\xi)$ is an arbitrary function of the variable ξ . Prove that if $\alpha_r\neq 0, u_r=\exp(\frac{-\gamma_rx}{\alpha_r})\phi_r(\beta_rx-\alpha_ry)$ is a solution of the equation $F(D,D')z=0$. Show that the equations $p^2+q^2-1=0, (p^2+q^2)x_1-pz=0$ are compatible and find a one parameter family of common solutions. Let $z=F(x_1,x_2,a)$ be a one parameter family of solutions of the pde $f(x_1,x_2,z,p,q)=0$. Then prove that the envelope of this one parameter family if it exists is also a solution of the pde. Derive Charpit's method for solving non linear pde.	(A, CO 1) (A, CO 3) (An, CO 2) (A, CO 1) (A, CO 2)			

 $(2 \times 6 = 12)$

Answer any 2 questions

Solve using Monge's method r+(a+b)s+abt=xy. 19. (An, CO 4)

Weights: 5

(i) Solve $(D^2-D^\prime)z=2y-x^2$ (ii) Solve $(D^2-D^\prime)z=e^{2x+y}$ 20. (A, CO 3)

21. Derive the condition for compatibility of first order pde's. (An, CO 2)

22. Prove that a necessary and sufficient condition for a Pfaffian differential (An, CO 1) equation $X.\,dr=0$ to be integrable is that $X.\,curlX=0$. $(5 \times 2 = 10)$

OBE: Questions to Course Outcome Mapping

СО	Course Outcome Description	CL	Questions	Total Wt.
CO 1	explain the classification of first order pde and their solutions	Α	3, 9, 10, 11, 14, 22	12
CO 2	illustrate the integrals of nonlinear pde's	An	1, 2, 7, 13, 15, 21	12
CO 3	analyze linear pde with constant coefficients and special second order pde's	An	5, 6, 12, 16, 20	11
CO 4	analyze solutions of Laplace's equation	An	4, 8, 17, 18, 19	11

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;