B. Sc. DEGREE END SEMESTER EXAMINATION : MARCH 2023 SEMESTER 4 : MATHEMATICS

COURSE: 19U4CRMAT4: ANALYTIC GEOMETRY NUMERICAL METHODS AND NUMBER THEORY

(For Regular - 2021 Admission and Improvement / Supplementary - 2020 / 2019 Admissions)

Time : Three Hours Max. Marks: 75

PART A Answer any 10 (2 marks each)

- 1. Find the nature of the conic $\frac{8}{r} = 4 5\cos\theta$.
- 2. Use bisection method to find the real root of the equation $f(x) = x^3 x 1 = 0$.
- 3. Find the equation of director circle to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 4. Find the points on the conic $\frac{9}{r}=2+\sqrt{2}\cos\theta$ whose radius vector is 3.
- 5. Show that if $a \equiv b \pmod{n}$, then $a^k \equiv b^k \pmod{n}$ for any positive integer k.
- 6. Show that if $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$.
- 7. State the conditions for proper conics
- 8. Show that if $a \equiv b \pmod{n}$, then $a + c \equiv b + c \pmod{n}$.
- 9. Evaluate f(2) where $f(x) = \log x + x \cos x$.
- 10. State the conditions for coincidence and perpendicularity of pair of straight lines.
- 11. Find the equation of normal to parabola $y^2=4ax$ at the point (x_1,y_1) .
- 12. Find the latus rectum, eccentricity and coordinates of foci of $9x^2+5y^2-30y=0$. (2 x 10 = 20)

PART B Answer any 5 (5 marks each)

- 13. Find the equation of pair of tangents to a conic.
- 14. Prove that if $ca \equiv cb \pmod{n}$ and $\gcd(c,n) = 1$, then $a \equiv b \pmod{n}$.
- 15. State the type of conic $8x^2 12xy + 17y^2 + 16x 12y + 3 = 0$.
- 16. State and prove Fermat's theorem.
- 17. Find the chord of contact of the point (2,3) with respect the conic $2x^2+6xy+4y^2-8x+7=0$.
- 18. Find a real root of the equation $x^3=1-x^2$ on the interval [0,1] with an accuracy of 10^{-4} .
- 19. Give the sequence of steps in the regula-falsi method for determining a real root of the equation f(x) = 0.
- 20. Show that the locus of all points the sum of whose distances from two fixed points is constant is an ellipse.

 $(5 \times 5 = 25)$

PART C Answer any 3 (10 marks each)

- 21. State and prove Wilson's theorem.
- 22. Use bisection method to find a root correct to three decimal places and lying between 0 and 0.5, of the equation $4e^{-x}\sin x 1 = 0$.
- 23. Reduce the equation $3x^2 + 2xy + 3y^2 16x + 20 = 0$ to canonical form.
- 24. Prove that the equation of the chord joining the points $\theta=\theta_1,\ \theta=\theta_2$ on the circle $r=2a\cos\theta$ is $r\cos(\theta-\theta_1-\theta_2)\ =2a\cos\theta_1\cos\theta_2$.

 $(10 \times 3 = 30)$