Reg. No \qquad Name
23U251

END SEMESTER EXAMINATION : MARCH 2023

SEMESTER 2 : INTEGRATED M.Sc. PROGRAMME COMPUTER SCIENCE

COURSE : 21UP2CPCMT02 : MATHEMATICS - II - LINEAR ALGEBRA

(For Regular - 2022 Admission and Improvement / Supplementary - 2021 Admission)
Time : Three Hours
Max. Weightage: 30

PART A
 Answer Any 8 Questions

1. Prove that ao $=0$ for every $a \in F$
2. Define linear independence and linear dependence
3. Evaluate $(2+3 i)(4+5 i)$.
4. Determine whether the following transformations are linear or not;
5. $T: R^{2} \rightarrow R^{2}$ defined by $T(a, b)=(2 a, 3 b)$
6. $T: R^{2} \rightarrow R^{2}$ defined by $T(a, b)=(a+2, b-2)$
7. Define LInear Map with an Example
8. Define Eigenvalue and Eigenvector
9. Let $T \in L\left(F^{3}\right)$ defined by $T(x, y, z)=(2 x+y, 5 y+3 z, 8 z)$.What are the eigen values of T
10. Suppose $v \in V$,then prove the following;
11. $\|v\|=0$ if and only if $v=0$
12. $\|\lambda v\|=|\lambda|\|v\|$ for all $\lambda \in F$
13. Define orthogonal vectors and check the following vectors are orthogonal; ($1,-1,0$), ($2,2,2$)
14. Define orthonormal list of vectors

PART B

Answer Any 6 Questions

11. Prove that every element in a vector space has a unique additive inverses.
12. Check whether the list $(1,2,1),(2,1,0),(1,-2,2)$ is a basis in F^{3}
13. Suppose V and W are finite dimensional vectorspaces such that $\operatorname{dim} V<\operatorname{dim} W$. Then prove that no linear map from V to W is surjective.
14. Find a basis of $P_{2}(R) \times R^{2}$
15. Suppose $p, q \in P(F)$ and $T \in L(V)$, then
16. $(p q)(T)=p(T) q(T)$
17. $p(T) q(T)=q(T) p(T)$
18. Check whether $T \in L\left(P^{1}\right)$ defined by $T(a t+b)=(2 a-3 b) t+(a-2 b)$ is diagonalizable with respect to the basis $3 t+1, t+1$ of P^{1}. Give valuable reason for your answer.
19. Check the following list of vectors are orthonormal list in F^{3}, $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right),\left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)\left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}\right)$
20. Prove that Every finite dimensional inner product space has an orthonormal basis
($2 \times 6=12$ Weight)

PART C

Answer Any 2 Questions

19. Prove that Every spanning list in a vector space can be reduced to a basis of the vector space and also prove that every linearly independent list of vectors in a finite dimensional vector space can be extended to a basis of the vector space.
20. State and prove the Fundamental theorem of Linear maps
21. 22. Check whether $T \in L\left(F^{2}\right)$ defined by $T(x, y)=(41 x+7 y,-20 x+74 y)$ are diagonalizable either over the standard basis of F^{2} or with respect to the basis $(1,4),(7,5)$ of F^{2}
1. Check whether $T \in L\left(P^{1}\right)$ defined by $T(a t+b)=(a+2 b) t+(4 a+3 b)$ is diagonalizable either over the standard basis of P^{1} or with respect to the basis $-t+1,5 t+10$ of P^{1}. Give valuable reason for your answers.
2. Find an Orthonormal basis of $P_{2}(R)$, where the innerproduct is given by $\langle p, q>$ $=\int_{-1}^{1} p(x) q(x) d x$
