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PART A
        Answer Any 8 Ques�ons

1. Prove that a0 = 0 for every a ∈ F
2. Define linear independence and linear dependence
3. Evaluate (2+3i)(4+5i).
4. Determine whether the following transforma�ons are linear or not;

�. T: R2→R2 defined by T(a,b) = (2a,3b)
�. T: R2→R2 defined by T(a,b) = (a+2, b‐2)

5. Define  LInear Map with an Example
6. Define Eigenvalue and Eigenvector 
7. Let T ∈ L(F3) defined by T(x,y,z) = (2x+y, 5y+3z, 8z).What are the eigen values of T
8. Suppose v ∈ V ,then prove the following;

�. ∥v∥ =0 if and only if v=0
�. ∥ λ v∥ = ∣λ  ∥v∥ for all λ ∈ F

9. Define orthogonal vectors and check the following vectors are orthogonal;
( 1,‐1,0), (2,2,2)

10. Define orthonormal list of vectors

                                                                                                                                             (1 x 8 = 8 Weight)

PART B
          Answer Any 6 Ques�ons

11. Prove that every element in a vector space has a unique addi�ve inverses.
12. Check whether the list (1,2,1), (2,1,0),(1,‐2,2) is a basis in F3

13. Suppose V and W are finite dimensional vectorspaces such that dimV < dimW. Then prove
that no linear map from V to W is surjec�ve.

14. Find a basis of P2(R) × R2

15. Suppose p,q ∈ P(F) and T ∈ L(V) ,then

�. (pq) (T) =p(T) q(T) 
�. p(T) q(T) = q(T) p(T) 

16. Check whether T ∈ L(P1 ) defined by T(at+b) = (2a‐3b)t +(a‐2b) is diagonalizable with respect
to the basis 3t+1,t+1 of P1.Give valuable reason for your answer.
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17. Check the following list of vectors are orthonormal list in F3,

18.  Prove that Every finite dimensional inner product space has an orthonormal basis

                                                                                                                                            (2 x 6 = 12 Weight)

PART C
       Answer Any 2 Ques�ons

19. Prove that Every spanning list in a vector space can be reduced to a basis of the vector
space and also prove that every linearly independent list of vectors in a finite dimensional
vector space can be extended to a basis of the vector space.

20. State and prove the Fundamental theorem of Linear maps

21. �. Check whether T ∈ L(F2 ) defined by T(x,y) = (41x+7y, ‐20x+74y)  are diagonalizable
either over the standard basis of F2 or with respect to the basis (1,4),(7,5) of F2

�. Check whether T ∈ L(P1 ) defined by T(at+b) = (a+2b)t +(4a+3b) is diagonalizable
either over the standard basis of P1 or with respect to the basis ‐t+1,5t+10 of P1.   
Give valuable reason for your answers.

22. Find an Orthonormal basis of P2(R) ,where the innerproduct is given by < p,q >

= 

                                                                                                                                       (5 x 2 = 10 Weight)
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