Reg.	No
END SEMESTER EXAMINATION : MARCH 2023	
SEMESTER 2: INTEGRATED M.Sc. PROGRAMME COMPUTER SCIENCE	
COURSE: 21UP2CRMCP05: DATA STRUCTURE USING C++	
	(For Regular - 2022 Admission and Improvement / Supplementary - 2021 Admission)
Time	e: Three Hours Max. Weightage: 30
PART A	
	Answer Any 8 Questions
1.	Name the operator that is prefixed before a variable to indicate that it is a pointer variable.
2.	Write the formula to determine the length of an array.
3.	The worst-case time complexity of insertion sort is
4.	With respect to time and space, define the complexity of a merge sort algorithm.
5.	Recursion can be implemented using the data structure
6.	Define a circular queue.
7.	Define the data structure - priority queue.
8.	The NEXT / LINK part of a node in a linked list contains
9.	Draw a diagram that represents a circular linked list containing three nodes.
10.	List any two applications of a linked list.
	(1 x 8 = 8 Weight)
	PART B
Answer Any 6 Questions	
11.	Write the algorithm to calculate the factorial of a number using recursion.
12.	Given an array arr[110][115] with base address 100 and the size of each element is 1 B in memory, find the address of arr[8][6] implemented in row-major order.
13.	Build a sorted heap from the following data:
	46, 25, 35, 49, 10, 92, 83, 32.
14.	Define Dequeue. Explain its classifications.
15.	<pre>Suppose a stack STK is allocated N=6 memory cells and initially STK is empty (TOP:=0). Find the output of the following module: 1. Set PPP:= 2 and QQQ:=5. 2. Call PUSH(STK, PPP). Call PUSH(STK, 4). Call PUSH(STK, QQQ + 2).</pre>

16. Write the postfix form of the expression : A + ((B + C) + (D + E) * F) / G

Call PUSH(STK, 9).

3. Repeat while TOP = 0:

4. Return.

Write: DATA.

Call PUSH(STK, PPP + QQQ).

Call POP(STK, DATA).

17. Correct the following module to make the program count the number of nodes in a list:

```
count_nodes() {
   int count=0;
   if(start == NULL)
      cout <<"List is Empty";
   else{
      node *ptr = start->next;
      while(ptr->next != NULL) {
         ptr = ptr->next;
         count ++;
      }
   }
}
```

18. Write a sample code snippet to create a new node of a linked list using class in C++.

 $(2 \times 6 = 12 \text{ Weight})$

PART C Answer Any 2 Questions

- 19. With an algorithm, write a C++ program to sort a list of numbers using insertion sort.
- 20. Using conversion algorithm, convert the following expression into postfix expression: $A + (B * C (D / E ^ F) * G) * H$
- 21. Convert the expression: A + (B * C (D / E F) * G) * H into postfix form showing the stack status after scanning each symbol.
- 22. Write a program in C++ to implement queue using linked list and perform the queue operations.

 $(5 \times 2 = 10 \text{ Weight})$