B. Sc. DEGREE END SEMESTER EXAMINATION - OCTOBER 2022
 SEMESTER - 3: MATHEMATICS (COMPLEMENTARY COURSE FOR PHYSICS AND CHEMSITRY)

COURSE: 15U3CPMAT3, VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND ANALYTIC GEOMETRY

(Common for Supplementary 2018 /2017/2016 /2015 Admissions)
Time: Three Hours
Max. Marks: 75

PART A

Each question carries 1 mark. Answer all the questions

1. Define Torsion.
2. Define Binormal vector
3. Define Directional Derivative.
4. Define potential function
5. Solve: $\frac{d y}{d x}+\frac{y}{x}=x^{3}-3$
6. Define Lagrange's differential equation
7. Define a linear differential equation.
8. Give the definition of an exact differential equation
9. Find the focus of the parabola $y^{2}=10 x$.
10. Find the centre and foci of an ellipse $\frac{(x-7)^{2}}{4}+\frac{(y-5)^{2}}{25}=1$
$(1 \times 10=10)$

PART B

Each question carries $\mathbf{2}$ marks. Answer any eight
11. Find the length of one turn of the helix $\vec{R}=\cos t \hat{\imath}+\operatorname{sint} t \hat{\jmath}+t \hat{k}$.
12. Find the gradient of the function $f(x, y)=y-x$ at $(2,1)$.
13. Find the Divergence and curl of the vector $\vec{V}=\left(3 x^{2}-3 y z\right) \hat{\imath}+\left(3 y^{2}-3 z x\right) \hat{\jmath}+$ $\left(3 z^{2}-3 x y\right) \hat{k}$
14. Show that $\vec{F}=y z \hat{\imath}+x z \hat{\jmath}+x y \hat{k}$ is conservative.
15. Find a function $f(x, y, z)$ such that $\vec{F}=\nabla f$ where $\vec{F}=2 x \hat{\imath}+3 y \hat{\jmath}+4 z \hat{k}$.
16. Solve: $\left(3 x^{2}+6 x y^{2}\right) d x+\left(6 x^{2} y+4 y^{3}\right) d y=0$
17. Draw the graph of the polar coordinates satisfying $1 \leq r \leq 2$ and $0 \leq \theta \leq \pi / 2$.
18. Find the eccentricity and the directrices of the ellipse $\frac{x^{2}}{7}+\frac{y^{2}}{16}=1$.
19. Solve $\frac{d y}{d x}=\frac{2 x}{3 x}+3 y$
20. Find the slope and intercept of $r \cos \theta=r \sin \theta$ by finding its equivalent Cartesian equation.

$$
(2 \times 8=16)
$$

PART C

Each question carries 5 marks. Answer any five.

21. Show that the curvature of a circle of radius a is $\frac{1}{a}$
22. Find the unit tangent vector of the curve $\overrightarrow{r(t)}=3 \cos t \hat{\imath}+3 \sin t \hat{\jmath}+t^{2} \hat{k}$.
23. Find the Binormal vector $\overrightarrow{r(t)}=\cos t \hat{\imath}+\sin t \hat{\jmath}+(-1) \hat{k}$ at $t=\frac{\pi}{4}$.
24. Use Green's theorem in a plane to evaluate the integral $\oint_{C}(y-\sin x) d x+(\cos x) d y$ where C is the plane triangle enclosed by the lines $y=0, x=\frac{\pi}{2}$ and $y=\frac{2}{\pi} x$
25. Solve: $y+p x=x^{4} p^{2}$
26. Solve: $\left(x^{2}+y^{2}-a^{2}\right) x d x+\left(x^{2}-y^{2}-b^{2}\right) y d y=0$.
27. Find the eccentricity, foci and directrices of the ellipse $6 x^{2}+9 y^{2}=54$

$$
(5 \times 5=25)
$$

PART D

Each question carries $\mathbf{1 2}$ marks. Answer any two.

28. Verify Divergence theorem for $\vec{F}=x^{2} \hat{\imath}+z \hat{\jmath}+y z \hat{k}$ taken over the cube bounded by $x=0, x=1, y=0, y=1, z=0, z=1$.
29. Solve: $p=\tan \left(x-\frac{p}{1+p^{2}}\right)$
30. Find the centre, foci, eccentricity and asymptotes of the conic

$$
5 x^{2}-4 y^{2}+20 x+8 y-4=0
$$

31. Identify the conic $x^{2}-y^{2}-2 x+4 y=4$. Find its center, foci, vertices and asymptotes
