\qquad

B. Sc. DEGREE END SEMESTER EXAMINATION : OCTOBER 2022 SEMESTER 3 : MATHEMATICS (CORE COURSE) FOR B Sc COMPUTER APPLICATION COURSE : 19U3CRCMT4 : VECTOR CALCULUS, TRIGONOMETRY AND MATRICES
 (For Regular - 2021 Admission and Improvement / Supplementary - 2020 / 2019 Admissions)

Time : Three Hours
Max. Marks: 75

PART A

Answer any 10 (2 marks each)

1. If A and B are vector functions then $\nabla \times(A+B)=\nabla \times A+\nabla \times B$
2. Show that $\vec{F}=\left(2 x^{2}+4 y^{2}-3 z^{2}\right) \boldsymbol{i}+\left(8 x y-y^{2}+2 z^{2}\right) \boldsymbol{j}+\left(4 y z+z^{2}-6 z x\right) \boldsymbol{k}$ is irrotational.
3. If V is a vector function, prove that $\nabla \cdot(\nabla \times \mathrm{V})=0$
4. If $\mathbf{A}(\mathrm{t})=\left(3 \mathrm{t}^{2}-2 \mathrm{t}\right) \mathbf{i}+(6 \mathrm{t}-4) \mathbf{j}+4 \mathrm{tk}$, evaluate $\int_{2}^{3} A(t) d t$.
5. State Guass's divergence theorem.
6. If $\mathbf{F}=3 x y \mathbf{i}-y^{2} \mathbf{j}$, evaluate $\int_{C} F$. $d r$, where C is the arc of the parabola $y=2 x^{2}$ from $(0,0)$ to $(1,2)$.
7. Separate into real and imaginary parts the expression sech $(x+i y)$.
8. Prove that $\tanh (x-y)=\frac{\tanh x-\tanh y}{1-\tanh \tanh y}$.
9. Prove that $\sin h 2 x=\frac{2 \tan h x}{1-\tan h^{2} x}$
10.

Find the characteristic equation for the matrix $\left[\begin{array}{ccc}1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1\end{array}\right]$
11.

Find the rank of $\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ -2 & 0 & 5 & 7\end{array}\right]$
12.

Find the eigen values of the matrix $\left[\begin{array}{ccc}1 & -1 & 0 \\ 2 & 3 & 2 \\ 1 & 1 & 2\end{array}\right]$.

PART B

Answer any 5 (5 marks each)

13. Find the directional derivative of the function $x 2(y+z)$ at $(1,1,0)$ in the direction of the line joining the origin to the point.
14. Find a unit vector normal to the surface $x y^{3} z^{2}=4$ at the point ($-1,-1,2$).
15. If $\mathbf{r}(\mathrm{t})=5 \mathrm{t}^{2} \mathbf{i}+\mathrm{tj}-\mathrm{t}^{3} \mathbf{k}$, prove that $\int_{1}^{2}\left(\mathbf{r} \times \frac{\mathrm{d}^{2} r}{\mathrm{dt}^{2}}\right) \mathrm{dt}=-14 \mathbf{i}+75 \mathbf{j}-15 \mathbf{k}$.
16. The acceleration of a particle at time t is given by $\mathbf{a}=18 \cos 3 \mathrm{ti}-8 \sin 2 \mathrm{tj}+6 \mathrm{tk}$. If the velocity \mathbf{v} and displacement \mathbf{r} be zero at $\mathrm{t}=0$, find \mathbf{v} and \mathbf{r} at any point of t .
17. If $\tan \frac{\theta}{2}=\tan h \frac{u}{2}$, show that $\sin h u=\tan \theta$
18. Factorise $x^{7}-1$ into real factors.
19. Solve the system of equations by matrix method.
$x+y+z=3, \quad x+2 y+3 z=4, \quad x+4 y+9 z=6$.
20.

Find the inverse of $A=\left[\begin{array}{ccc}2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]$ by Guass Jordan method.
($5 \times 5=25$)
PART C

Answer any 3 (10 marks each)

21. If \mathbf{A} is a vector function and φ is a scalar function, then prove that
a) $\operatorname{div}(\varphi \mathbf{A})=\varphi \operatorname{div} \mathbf{A}+(\operatorname{grad} \varphi) \cdot \mathbf{A}$
b)curl $(\varphi \mathbf{A})=\varphi \operatorname{curl} \mathbf{A}+(\operatorname{grad} \varphi) \times \mathbf{A}$
22. Verify Green's theorem in the plane for $\oint_{C}\left(x y d x+x^{2} d y\right)$, where C is the curve enclosing the region bounded by the parabola $y=x^{2}$ and the line $y=x$.
23. Find the sum to infinity of the following series
$c \sin \alpha+\frac{1}{3} c^{3} \sin 3 \alpha+\frac{1}{5} c^{5} \sin 5 \alpha+\ldots \ldots \ldots \ldots \ldots$.
24.

Find the eigen values and eigen vectors of the matrix $\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$
$(10 \times 3=30)$

