B. Sc. DEGREE END SEMESTER EXAMINATION - OCTOBER 2022

SEMESTER – 3 : CORE COURSE FOR MATHEMATICS AND COMPUTER APPLICATIONS COURSE: 15U3CRMAT3-15U3CRCMT3; CALCULUS

(Common for Supplementary 2015/2016/2017/2018 Admissions)

Time: Three Hours

Max Marks: 75

PART A

Answer all questions. Each question carries 1 mark

- 1. State Leibnitz theorem.
- 2. Find the n^{th} derivative of y = a^{mx} .
- 3. What is the relation between the evolute and envelope of a curve
- 4. State Euler's Mixed Derivative Theorem.
- 5. Define critical point of a function f(x, y).
- 6. Evaluate $\int_{0}^{\frac{\pi}{4}} tanxsec^{2}x dx$
- 7. Write surface area formula for revolution about *y* axis.
- 8. State first derivative test for local extreme values of f(x, y).
- 9. Evaluate \int_{-2}^{2} (x⁴ 4x² + 6)dx
- 10. Find a spherical coordinate equation for the sphere $x^2 + y^2 + (z 1)^2 = 1$.

 $(1 \times 10 = 10)$

PART B Answer any eight questions. Each question carries 2 mark

- 11. Find all asymptotes of the curve $y^3 6xy^2 + 11x^2y 6x^3 + x + y = 0$.
- 12. Determine the points of inflexion of the curve $y = x^4 6x^3 + 12x^2 + 5x + 7$.
- 13. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at the point (4, -5) if f(x,y) = x^2 + 3xy+y-1
- 14. Express $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ in terms of r and s if $w = x^2 + y^2$, x = r s, y = r + s
- 15. Draw a tree diagram for the chain rule for functions of 3 variables
- 16. Find the area of surface of the region generated by revolving the curve $x = y^3/3$, $0 \le y \le 1$ about x axis.
- 17. Find the length of the curve $y = x^{3/2}$ from x = 0 to x = 4.
- 18. Find a spherical co-ordinate equation for the cone z = $\sqrt{x^2 + y^2}$
- 19. Calculate $\iint_R xy \, dx \, dy$ where *R* is the region of the circle $x^2 + y^2 = 25, x \ge 0, y \ge 0$.
- 20. Evaluate the integral by changing in to polar Integral, $\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} dy dx$

(2 x 8 = 16)

PART C

Answer any five questions. Each question carries 5 mark

- 21. Find the points of inflection on the curve $y = \frac{a^2 x}{x^2 + a^2}$ and show that they lie on a straight line.
- 22. Find the area of the surface generated by revolving the curve $y = 2\sqrt{x}$, $1 \le x \le 2$ about the x axis.
- 23. Obtain the evolute of the parabola $y^2 = 4ax$.
- 24. Find the points of inflexion on the curve $y = (\log x)^3$.
- 25. Find the area of the region enclosed by the parabola $y = 2 x^2$ and y = -x
- 26. Find the centre of curvature of y^2 =4ax
- 27. Evaluate the integral $\int_0^1 \int_0^{\pi} \int_0^{\frac{\pi}{4}} 12\rho \sin^3\phi \, d\phi d\theta d\rho$

(5 x 5 = 25)

PART D

Answer any two questions. Each question carries 12 mark.

- 28. a) If $y=e^{\tan^{-1}x}$, prove that $(1+x^2) y_{n+1}+ 2n(x-1) y_n + m(n-1)y_{n-1}=0$ b) Find the asymptotes of $y^3-6xy^2+11x^2y-6x^3+x+y=0$
- 29. The plane x + y + z = 1 cuts the cylinder $x^2 + y^2 = 1$ in an ellipse. Find the points on the ellipse that lie closest to and farthest from the origin.
- 30. Find the volume of the region D enclosed by the surfaces $Z = x^2 + 3y^2$ and $Z = 8 x^2 y^2$
- 31. a. Find the length of the astroid $x + \cos^3 t$, $y = \sin^3 t$, $0 \le t \le 2 \ge 1$
 - b. The line segment $x = 1-y, 0 \le y \le 1$ is revolved about the y axis to generate a cone. Find its lateral surface area. (which excludes the base area)

 $(12 \times 2 = 24)$
