\qquad

B. Sc. DEGREE END SEMESTER EXAMINATION - OCTOBER 2022

SEMESTER - 3 : CORE COURSE FOR MATHEMATICS AND COMPUTER APPLICATIONS COURSE: 15U3CRMAT3-15U3CRCMT3; CALCULUS

(Common for Supplementary 2015/2016/2017/2018 Admissions)

PART A

Answer all questions. Each question carries 1 mark

1. State Leibnitz theorem.
2. Find the $n^{\text {th }}$ derivative of $y=a^{m x}$.
3. What is the relation between the evolute and envelope of a curve
4. State Euler's Mixed Derivative Theorem.
5. Define critical point of a function $f(x, y)$.
6. Evaluate $\int_{0}^{\frac{\pi}{4}} \tan x \sec ^{2} x d x$
7. Write surface area formula for revolution about y axis.
8. State first derivative test for local extreme values of $f(x, y)$.
9. Evaluate $\int_{-2}^{2}\left(x^{4}-4 x^{2}+6\right) d x$
10. Find a spherical coordinate equation for the sphere $\mathrm{x}^{2}+\mathrm{y}^{2}+(\mathrm{z}-1)^{2}=1$.

PART B
 Answer any eight questions. Each question carries 2 mark

11. Find all asymptotes of the curve $y^{3}-6 x y^{2}+11 x^{2} y-6 x^{3}+x+y=0$.
12. Determine the points of inflexion of the curve $y=x^{4}-6 x^{3}+12 x^{2}+5 x+7$.
13. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at the point $(4,-5)$ if $f(x, y)=x^{2}+3 x y+y-1$
14. Express $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ in terms of r and s if $w=x^{2}+y^{2,}, x=r-s, y=r+s$
15. Draw a tree diagram for the chain rule for functions of 3 variables
16. Find the area of surface of the region generated by revolving the curve $x=y^{3} / 3,0 \leq y \leq 1$ about x axis.
17. Find the length of the curve $y=x^{3 / 2}$ from $x=0$ to $x=4$.
18. Find a spherical co-ordinate equation for the cone $z=\sqrt{x^{2}+y^{2}}$
19. Calculate $\iint_{R} x y d x d y$ where R is the region of the circle $x^{2}+y^{2}=25, x \geq 0, y \geq 0$.
20. Evaluate the integral by changing in to polar Integral, $\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} d y d x$

PART C

Answer any five questions. Each question carries 5 mark

21. Find the points of inflection on the curve $y=\frac{a^{2} x}{x^{2}+a^{2}}$ and show that they lie on a straight line.
22. Find the area of the surface generated by revolving the curve $y=2 \sqrt{ } x, 1 \leq x \leq 2$ about the x axis.
23. Obtain the evolute of the parabola $y^{2}=4 a x$.
24. Find the points of inflexion on the curve $y=(\log x)^{3}$.
25. Find the area of the region enclosed by the parabola $y=2-x^{2}$ and $y=-x$
26. Find the centre of curvature of $y^{2}=4 a x$
27. Evaluate the integral $\int_{0}^{1} \int_{0}^{\pi} \int_{0}^{\frac{\pi}{4}} 12 \rho \sin ^{3} \phi d \phi d \theta d \rho$

PART D

Answer any two questions. Each question carries 12 mark.

28. a) If $y=e^{\tan ^{-1} x}$, prove that ($1+x^{2}$) $y_{n+1}+2 n(x-1) y_{n}+m(n-1) y_{n-1}=0$
b) Find the asymptotes of $y^{3}-6 x y^{2}+11 x^{2} y-6 x^{3}+x+y=0$
29. The plane $x+y+z=1$ cuts the cylinder $x^{2}+y^{2}=1$ in an ellipse. Find the points on the ellipse that lie closest to and farthest from the origin.
30. Find the volume of the region D enclosed by the surfaces $Z=x^{2}+3 y^{2}$ and $Z=8-x^{2}-y^{2}$
31. a. Find the length of the astroid $\mathrm{x}+\operatorname{Cos}^{3} \mathrm{t}, \mathrm{y}=\operatorname{Sin}^{3} \mathrm{t}, 0 \leq t \leq 2 \geq$
b. The line segment $x=1-y, 0 \leq y \leq 1$ is revolved about the y axis to generate a cone.

Find its lateral surface area. (which excludes the base area)

