\qquad Name

B. Sc DEGREE END SEMESTER EXAMINATION : OCTOBER 2022

SEMESTER 3 : COMPUTER APPLICATIONS

COURSE : 19U3CRCMT3 : CALCULUS

(For Regular - 2021 Admission and Improvement / Supplementary - 2020 / 2019 Admission)
Time : Three Hours
Max. Marks: 75

PART A

Answer any 10 (2 marks each)

1. Prove that the radius of curvature at any point of the catenary $y=c \cos h\left(\frac{x}{c}\right)$ varies as the square of the ordinate.
2. Determine the constants a and b so that the curve $y=x^{3}+a x^{2}+b x$ has an inflecton at the point (3, -9).
3. Find the $n^{\text {th }}$ derivative of $\sin x \cos 3 x$.
4. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ if $f(x, y)=\tan ^{-1}\left(\frac{y}{x}\right)$.
5. Use chain rule to find the derivative of $w=2 y e^{x}-\ln z$ with respect to t along the path $x=$ $\ln \left(t^{2}+1\right), y=\tan ^{-1} \mathrm{t}, z=e^{t}$.
6. If $f(x, y)=x^{2} y-2 x y$ and $R: 0 \leq x \leq 3,-2 \leq y \leq 0$, then evaluate $\iint_{R} f(x, y) d A$.
7. Find the centroid of the region R between the semi-circle $y=\sqrt{a^{2}-x^{2}}$ and the x-axis.
8. Find the area between the curves $y=\sec ^{2} x$ and $y=\sin x$ from 0 to $\pi / 4$.
9. Evaluate the integral $\int_{0}^{\frac{\pi}{3}} \frac{\tan \theta d \theta}{\sqrt{2 \sec \theta}}$.
10. Evaluate $\int_{0}^{3} \int_{0}^{2}\left(4-y^{2}\right) d y d x$.
11. Find the Jacobian $J(u, v)$ for the transformation $x=u \operatorname{cosv}, y=u \operatorname{sinv}$.
12. Integrate $f(x, y)=x / y$ over the region in the first quadrant bounded by the lines $y=x, y=2 x, x=1, x$ $=2$.
$(2 \times 10=20)$

PART B

Answer any 5 (5 marks each)

13. Expand In cosh x by Maclaurin's series.
14. Find the co-ordinates of the centre of curvature at a point (x, y) of the parabola $y^{2}=4 a x$.
15. Find all local maxima,local minima and saddle points of the function $f(x, y)=2 x y-5 x^{2}-2 y^{2}+4 x+4 y-4$.
16. If $v=\ln \left(x^{3}+y^{3}+z^{3}-3 x y z\right)$, show that $\frac{\partial v}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial v}{\partial z}=\frac{3}{x+y+z}$.
17. Find the area of the region enclosed by the curve $y^{2}=4 x$ and the line $y=4 x-2$.
18. Find the length of the curve $y=\log \sec x$ between points given by $x=0$ and $x=\frac{\pi}{3}$
19. Change the cartesian integral into equivalent polar integral and hence evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}}\left(x^{2}+y^{2}\right) d y d x$.
20. Evaluate $\int_{0}^{a} \int_{0}^{x} \int_{0}^{y} x y z d z d y d x$.

PART C

Answer any 3 (10 marks each)

21. Find all asymptotes of the
curve $y^{3}-5 x y^{2}+8 x^{2} y-4 x^{3}-3 y^{2}+9 x y-6 x^{2}+2 y-2 x-1=0$.
22. Find the absolute maximum and minimum values of $f(x, y)=x^{2}+x y+y^{2}-6 x+2$ on the rectangular plate $0 \leq x \leq 5,-3 \leq y \leq 0$.
23. a) Find the area of the surface generated by revolving the curve $y=\sqrt{2 x+1}, \quad 0 \leq x \leq 3$, about the x -axis.
b) Find the volume of the solid generated by revolving the region bounded by the x-axis, the curve y $=3 x^{4}$ and the lines $x=1$ and $x=-1$ about the line $y=3$.
24. Find the volume of the portion of the solid sphere $\rho \leq a$ that lies between the planes $\phi=\frac{\pi}{3}$ and $\phi=\frac{2 \pi}{3}$.
