\qquad

B. Sc. DEGREE END SEMESTER EXAMINATION : OCTOBER 2022
 SEMESTER 3 : MATHEMATICS

COURSE : 19U3CRMAT03 : VECTOR CALCULUS, THEORY OF EQUATIONS AND MATRICES
(For Regular - 2021 Admission and Improvement / Supplementary - 2020 / 2019 Admissions)
Time : Three Hours
Max. Marks: 75

PART A

Answer any 10 (2 marks each)

1. Define eigen value and eigen vector.
2. State Gauss divergence theorem and prove that for any closed surface $S, \iint_{s} \operatorname{curl} \bar{F} . \hat{n} d s=0$.
3. Define homogeneous equation and give the condition for trivial solution and non trivial solution.
4. Calculate the eigen values of matrix $\left[\begin{array}{ll}1 & 6 \\ 3 & 7\end{array}\right]$
5. Find the sum of the cubes of the roots of the equation $x^{3}-2 x^{2}+x+1=0$
6. Explain the term normal form of a matrix with examples.
7. Form a rational quartic equation whose roots are $1,-1$ and $2+\sqrt{3}$
8. Show that $\operatorname{div}(\operatorname{grad} \phi)=\nabla^{2} \phi$.
9. If α, β, γ are the roots of the equation $x^{3}-p x^{2}+q x-r=0$, find the value of $\sum \alpha^{2}$.
10. Evaluate the angle between the normals to the surface $x y=z^{2}$ at the points $(4,1,2)$ and $(3,3,-3)$.
11. Show that $\nabla(\bar{A} \times \bar{B})=(\nabla . \bar{B}) \bar{A}-(\nabla . \bar{A}) \bar{B}+(\bar{B} . \nabla) \bar{A}-(\bar{A} . \nabla) \bar{B}$.
12. State Stoke's theorem.
$(2 \times 10=20)$
PART B

Answer any 5 (5 marks each)

13. If $\bar{F}=\left(2 x^{2}-3 z\right) i-2 x y j-4 x k$, then evaluate
$\iiint_{V} \nabla \times \bar{F} d v$, where V is the closed region bounded by the planes $x=0, y=0, z=0$ and
$2 x+2 y+z=4$.
14. Find the values of constants λ and μ so that the surface $\lambda x^{2}-\mu y z=(\lambda+2) x$ and $4 x^{2} y+z^{3}=4$ may intersect orthogonally at $(1,-1,2)$
15.

Find the eigen values of $\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$ and evaluate the eigen vector corresponding to the larger eigen value .
16. Solve the equation $x^{3}+x^{2}-16 x+20=0$, given that some of its roots are repeated.
17. Evaluate $\int_{c}\left(2 x^{2} y+y+z^{2}\right) i+2\left(1+y z^{2}\right) j+\left(2 z+3 y^{2} z^{2}\right) k . d \bar{r}$ along the curve $c: y^{2}+z^{2}=a^{2}, x=0$.
18.

Use Gauss Jordan method to find the inverse of $\left[\begin{array}{ccc}1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4\end{array}\right]$.
19. Given that the roots of the equation $4 x^{3}-24 x^{2}+23 x+18=0$ are in arithmetic progression, solve the equation.
20. Evaluate grad ϕ when $\phi=3 x^{2} y-y^{3} z^{2}$ at the point $(1,-2,-1)$
($5 \times 5=25$)

PART C

Answer any 3 (10 marks each)
21. Evaluate $\iint_{S} \bar{A} \cdot \hat{n} d s$, where $\bar{A}=\left(x+y^{2}\right) i-2 x j+2 y z k$ and S is the surface of the plane $2 x+y+2 z=6$ in the first octant.
22. (a) Solve $x^{4}+12 x^{2}+8 x+6=0$ using Ferrari's method
(b) Solve $x^{3}-6 x^{2}+3 x-2=0$ using Cardan's method.
23.

Verify Cayley Hamilton theorem for the matrix A and find A^{-1}, where $\mathrm{A}=\left[\begin{array}{lll}1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1\end{array}\right]$
24. (a) Prove that $\operatorname{curl}(\operatorname{curl} \bar{v})=\operatorname{grad}(\operatorname{div} \bar{v})=\nabla^{2} \bar{v}$.
(b) If $\bar{A}\left(3 x z^{2}\right) i-(y z) j+(x+2 z) k$, find $\operatorname{curl}(\operatorname{curl} \bar{A})$

