\qquad Name \qquad

B.Sc. DEGREE END SEMESTER EXAMINATION: OCTOBER 2022 SEMESTER 5: MATHEMATICS (CORE COURSE) COURSE: 15U5CRMAT7: ABSTRACT ALGEBRA
 (Common for Supplementary 2015/2016/2017/2018 admissions)

Time: Three Hours
Max. Marks: 75

PART A
 Each Question carries 1 Mark
 Answer All Questions

1. How many elements are there in the ring of matrices $M_{2}\left(\mathbb{Z}_{3}\right)$?
2. Prove that the set $G=\{0,1,2,3,4,5\}$ is an abelian group under addition modulo 6 .
3. Prove that a cyclic group of order eight is homomorphic to a cyclic group of order four.
4. Give an example for a non-commutative ring.
5. Prove that every permutation in S_{n} can be written as a product of at most ($n-1$) transpositions for $n \geq 2$.
6. Express the additive inverse of 21 in the group $<\mathbb{Z}_{73,+73}>$ as a positive integer in \mathbb{Z}_{73}.
7. State true or false: Null set forms a group.
8. Define canonical map from \mathbb{Z} to $\mathbb{Z} / n \mathbb{Z}$
9. Which are the zero divisors in \mathbb{Z}_{12} ?
10. Define a division ring.

PART B
 Each Question carries 2 Marks
 Answer any Eight

11. Show that arbitrary intersection of subgroups of a group G is a subgroup of G.
12. Prove that every cyclic group is abelian.
13. For given subrings $U 1$ and $U 2$ of a ring R , show that their intersection $U 1 \cap U 2$ is also a subring of R.
14. Is -1 the generator of the cyclic group \mathbb{Z} ? If yes, describe how to generate 3 using the the generator -1 .
15. Show that if $a \in G$, where G is a finite group with identity e, then there exist a positive integer n such that $a^{n}=e$.
16. Define Klein - 4 group and draw its group table.
17. Determine all ideals of $\mathbb{Z} \times \mathbb{Z}$.
18. If G is a finite group of even order then prove that there exists at least one element $a \neq e$ where e is the identity element, such that $a=a^{-1}$.
19. Prove: Every group of prime order is cyclic.
20. Let $f=\left(\begin{array}{lll}1 & 4 & 2\end{array}\right)$ and $g=(12)(435) \in S_{5}$ find $f o g$ and $g o f$.

PART C

Each Question carries 5 Marks

Answer Any Five

21. Draw the group table of a cyclic group of order 5 .
22. Define an automorphism of a group. Show that all automorphisms of a group G form a group under function composition.
23. State and prove characterisation of maximal normal subgroups.
24. Let $G=\left\{1, a, a^{2}, a^{3}\right\}\left(a^{4}=1\right)$ be a group and $H=\left\{1, a^{2}\right\}$ is a subgroup of G under multiplication. Find all cosets of H .
25. If ' p ' is prime prove that $\mathbb{Z} p$ is a field.
26. Prove: If a ring R can be partitioned into cells with both the induced operations well defined and if the cells form a ring under these induced operations, then the cell containing additive identity 0 of R will be a subgroup N of the additive group $(R,+)$. Furthermore, $\forall r \in R$ and $\forall n \in N$, both $r n \in N$ and $n r \in N$.
27. Let S be the set of all real numbers except -1. Define * on S by $a * b=a+b+a b$. Show that ($\mathrm{S},{ }^{*}$) forms a group. ($5 \times 5=25$)

PART D
 Each Question carries 12 Marks Answer Any Two

28. State and prove fundamental theorem for group homomorphism.
29. State and prove Cayley's Theorem.
30. Prove: No permutation of a finite set can be expressed both as a product of an even number of transpositions and as a product of an odd number of transpositions.
31. State and prove any necessary and sufficient condition for any subset of a group to become a subgroup under the same group operation.
$(12 \times 2=24)$
