B.Sc. DEGREE END SEMESTER EXAMINATION : OCTOBER 2022
 SEMESTER 5 : COMPUTER APPLICATION
 COURSE: 19U5CRCMT6 : MATHEMATICAL ANALYSIS
 (For Regular - 2020 Admission and Supplementary - 2019 Admission)

Time: Three Hours
Max. Marks: 75

PART A

Answer any 10 (2 marks)

1. Define an interval. Give an example of a closed interval.
2. Find the infimum and the supremum of $\left\{1+\frac{(-1)^{n}}{n}: n \in \mathbb{N}\right\}$.
3. Every supremum of a set is a greatest member. True/False. Justify your answer.
4. Show that the set of natural numbers is order complete.
5. Define interior of a set. What is the interior of $\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots \ldots \ldots.\right\}$.
6. Define a derived set. Obtain the derived set of $\{x: 0<x<1 ; x \in \mathbb{Q}\}$.
7. Define a countable set. Give an example.
8. Show that the set $\left\{1,-1,1 \frac{1}{2},-1 \frac{1}{2}, 1 \frac{1}{3},-1 \frac{1}{3}, \ldots \ldots \ldots.\right\}$ is closed, but not open.
9. Find the limit points of the sequence $\left\{S_{n}\right\}$ where $S_{n}=1+(-1)^{n} ; n \in \mathbb{N}$.
10. Define a bounded sequence. Give an example.
11. What is the nature of convergence of sequence $\left\{1,2, \frac{1}{2}, 3, \frac{1}{3}, \ldots \ldots \ldots\right\}$.
12. Show that $\operatorname{Re}(i z)=-\operatorname{Im}(z)$.
$(2 \times 10=20)$

PART B

Answer any 5 (5 marks each)
13. If a be a positive real number and b , any real number, then prove that there exists a positive integer n such that $n a>b$.
14. Prove that every open interval (a, b) contains a rational number.
15. Prove that the union of two closed sets is a closed set.
16. Prove that the derived set of a bounded set is bounded.
17. Find limit inferior and limit superior of the sequence $\left\{a_{n}\right\}$ where $a_{n}=\sin \frac{n \pi}{3} ; n \in \mathbb{N}$.
18. Prove that every convergent sequence is bounded.
19. Show that the sequence $\left\{b_{n}\right\}$ where $b_{n}=\frac{1}{(n+1)^{2}}+\frac{1}{(n+2)^{2}}+\frac{1}{(n+3)^{2}}+\ldots \ldots \ldots \ldots+\frac{1}{(2 n)^{2}}$ converges to 0 .
20. Show that
a) $\left|e^{i \theta}\right|=1$
b) $\overline{e^{\iota \theta}}=e^{-i \theta}$

PART C
 Answer any 3 (Each one carries 10 marks)

21. Prove that the set of rational numbers is not order complete.
22. Prove that the derived set S^{\prime} of a bounded infinite set $S \subseteq \mathbb{R}$ has the smallest and the greatest members.
23. State and prove Cauchy's general principle of convergence.
24.

a) Find the cube roots of the complex number $-8 i$.
b) If a set contains each of its accumulation points, then prove that this set must be a closed set.
$(10 \times 3=30)$

