B. Sc. DEGREE END SEMESTER EXAMINATION: MARCH 2023

EMESTER 2: COMPLEMENTARY MATHEMATICS FOR PHYSICS AND CHEMISTRY

COURSE: 19U2CPMAT2: CALCULUS - 2 AND NUMERICAL ANALYSIS

(For Regular - 2022 Admission and Improvement / Supplementary – 2021/2020/2019 Admissions)

Time : Three Hours Max. Marks: 75

PART A

Answer any 10 (2 marks each)

1. Find the divergence and curl of the vector $\overrightarrow{V}=\left(xyz\right)\!i+\left(3x^2y\right)\!j+\left(xz^2-y^2z\right)\!k$ at the point (2,-1,1)

2. What is the Lagrange's formula for unequal intervals?

$$3.$$
 If $\overrightarrow{r}=xi+yj+zk$, show that $abla\Bigl(\overrightarrow{a}\,.\,\overrightarrow{r}\Bigr)=\overrightarrow{a}$, where \overrightarrow{a} is a constant vector

- 4. Define Simpson's one third rule.
- 5. State the Gauss Divergence Theorem.

6. Show that
$$abla imes \left(\overrightarrow{A} + \overrightarrow{B}\right) =
abla imes \overrightarrow{A} +
abla imes \overrightarrow{B}$$

$$\overrightarrow{r}$$
 . If $\overrightarrow{r}=xi+yj+zk$, then evaluate $\left(i
ight)div\overrightarrow{r}$ $\left(ii
ight)curl\overrightarrow{r}$

- 8. Write the iteration formula for the Regula-Falsi method.
- 9. Prove that $\Delta \frac{u_x}{v_x} = \frac{v_x \Delta u_x u_x \Delta v_x}{v_x v_{x+1}}$
- 10. What is the general form of third approximation x_1 if a and b are the first two approximations using regula falsi method.
- 11. Write the rate of convergence of Newton-Raphson method.
- 12. Show that $\Delta c f(x) = c \Delta f(x)$.

 $(2 \times 10 = 20)$

PART B

Answer any 5 (5 marks each)

- 13. Draw the graph of $y=e^{x-1}$ and find graphically the value of root of the equation $3-x=e^{x-1}$.
- 14. Use Green's theorem in the plane to evaluate the integral $\oint_C (2x^2-y^2)\,dx + (x^2+y^2)\,dy \text{ where } C \text{ is the boundary in the } xy\text{- plane of the area}$ enclosed by the x- axis and the semicircle $x^2+y^2=1$ in the upper half xy plane.
- 15. Evaluate $\iint_S (y^2z^2\hat{i}+z^2x^2\hat{j}+z^2y^2\hat{k})$. $\hat{n}\,dS$, where S is the part of the sphere $x^2+y^2+z^2=1$ above the xy-plane and bounded by this plane.
- 16. Prove that $\Delta=rac{1}{2}\delta^2+\delta\sqrt{1+rac{1}{4}\delta^2}$
- 17. If \overrightarrow{a} is a constant vector and $\overrightarrow{r}=xi+yj+zk$, prove that $curl\left(\overrightarrow{a}\times\overrightarrow{r}\right)=2\overrightarrow{a}$
- 18. Find by iteration method, a real root of $2x \log_{10} x = 7$.

- $^{19.}$ Prove that $\Delta log f(x) = log [1 + rac{\Delta f(x)}{f(x)}]$
- 20. Find the angle between the tangent planes to the surfaces $x\log\,z=y^2-1$ and $x^2y=2-z$ at the point (1,1,1)

 $(5 \times 5 = 25)$

PART C Answer any 3 (10 marks each)

- Verify Stoke's theorem for $\overset{\longrightarrow}{F}=(2x-y)\hat{i}-yz^2\hat{j}-y^2z\hat{k}$ over the upper half surface of $x^2+y^2+z^2=1$, bounded by its projection on the xy- plane.
- 22. Find a root of the equation $x^3-x-11=0$, correct to 4 decimals using bisection method.
- a. Prove that the vector $f\!\left(r
 ight)\overrightarrow{r}$ is irrotational b. Prove that $abla^2 f\!\left(r
 ight) = f^{"}\!\left(r
 ight) + rac{2}{r}f'\!\left(r
 ight)$
- 24. Express the function $f(x) = 2x^3 + 3x^2 5x + 4$ and its successive differences in factorial notation. Also obtain a function whose first difference is f(x).

 $(10 \times 3 = 30)$