B. Sc. DEGREE END SEMESTER EXAMINATION: MARCH 2023 SEMESTER 2: MATHEMATICS FOR B Sc COMPUTER APPLICATIONS

COURSE: **19U2CRCMT2**: **ANALYTIC GEOMETRY, THEORY OF EQUATIONS AND NUMERICAL METHODS** (For Regular - 2022 Admission and Improvement / Supplementary — 2021/2020/2019 Admissions)

Time : Three Hours Max. Marks: 75

PART A Answer any 10 (2 marks each)

- 1. Evaluate $\Delta\left(\frac{x^2}{\sin\ 2x}\right)$ interval of differencing being h.
- 2. Find the distance between two points in the polar co-ordinate system.
- 3. Find the equation of a circle in polar co-ordinates.
- 4. If lx+my+n=0 is a normal to the parabola $y^2=4ax$, show that $al^3+2alm^2+m^2n=0$.
- 5. Evaluate $\int_{-3}^{3} x^4 dx$ using Simpson's 1/3 rule
- 6. Show that the tangents at the extremities of a diameter of an ellipse are parallel to the diameter conjugate to it.
- 7. Find the condition in order that the line $\frac{l}{r}=A\cos\theta+B\sin\theta$ may be a tangent to the conic $\frac{l}{r}=1+e\cos\theta$.
- 8. If α,β,γ are the roots of the equation $x^3-px^2+qx+r=0$. Find the value of $\sum rac{1}{eta^2\gamma^2}$.
- 9. Form the equations whose roots are three times the root of the equation i) $x^3-x^2+x+1=0$ and ii) $2x^3-5x^2+7=0$
- 10. The chord joining 2 points t_1 and t_2 to the parabola $y^2=4ax$ pass through the focus. Prove that t_1t_2 = -1.
- 11. Diminish by 3, the roots of the equation $x^5-4x^4+3x^2-4x+6=0$.
- 12. Find the condition for the lines lx+ my + n = 0 and l'x + m'y + n = 0 to be conjugate with respect to parabola $y^2 = 4ax$.

 $(2 \times 10 = 20)$

PART B Answer any 5 (5 marks each)

- $^{13.}$ Evaluate $(
 abla+\Delta)^2ig(x^2+xig),\ h=1.$
- 14. Solve the equation $x^4 8x^3 + 19x^2 12x + 2 = 0$ by removing its second term.
- 15. Find the asymptotes of the hyperbola $3x^2 5xy 2y^2 + 17x + y + 14 = 0$.
- 16. Use Lagrange's interpolation formula to find y when x=5 from the following data.

 $x: 0 \quad 1 \quad 3 \quad 8$ $y: 1 \quad 3 \quad 13 \quad 123$

- 17. Find the equation of asymptotes of the conic $\frac{l}{r} = 1 + e \cos \theta$.
- 18. The normals at 3 points P, Q, R of the parabola $y^2=4ax$ meet at (h, k). Prove that the centroid of the triangle PQR lies on the axis $\frac{2}{3}$ (h-2a) from the vertex.

- 19. Solve $x^5 + 6x^4 + 11x^3 + 11x^2 + 6x + 1 = 0$.
- 20. If PSP is a focal chord of a conic, S is the focus and SL is the semi latus rectum, then show that $\frac{2}{SL}=\frac{1}{SP}+\frac{1}{SP'}$

 $(5 \times 5 = 25)$

PART C Answer any 3 (10 marks each)

- a) If the chord PQ of a hyperbola cuts it's asymptotes at R and S, then prove that PR= QS.b) Show that the eccentric angles of ends of a pair of conjugate diameters differ by a right angle.
- The following data gives the population of a town during last six censuses. Estimate using Newtons Interpolation formula, the increase in population duirng the period 1946 to 1948
 Year : 1911 1921 1931 1941 1951 1961
 Population i(n thousands): 12 15 20 27 39 52
- 23. a) Find the locus of foot of the perpendicular from a fixed point on a circle upon any tangent.
 - b) Find the equation of asymptotes of the conic $rac{l}{r}=1+e\cos{\theta}.$
- 24. Solve by Cardans method $x^3-9x+28=0$.

 $(10 \times 3 = 30)$