Reg. No \qquad Name
23U235

B. Sc. DEGREE END SEMESTER EXAMINATION : MARCH 2023

SEMESTER 2 : MATHEMATICS FOR B Sc COMPUTER APPLICATIONS COURSE : 19U2CRCMT2: ANALYTIC GEOMETRY, THEORY OF EQUATIONS AND NUMERICAL METHODS
(For Regular - 2022 Admission and Improvement / Supplementary - 2021/2020/2019 Admissions)
Time : Three Hours
Max. Marks: 75

PART A

Answer any 10 (2 marks each)

1. Evaluate $\Delta\left(\frac{x^{2}}{\sin 2 x}\right)$ interval of differencing being h .
2. Find the distance between two points in the polar co-ordinate system.
3. Find the equation of a circle in polar co-ordinates.
4. If $l x+m y+n=0$ is a normal to the parabola $y^{2}=4 a x$, show that $a l^{3}+2 a l m^{2}+m^{2} n=0$.
5. Evaluate $\int_{-3}^{3} x^{4} d x$ using Simpson's $1 / 3$ rule
6. Show that the tangents at the extremities of a diameter of an ellipse are parallel to the diameter conjugate to it.
7. Find the condition in order that the line $\frac{l}{r}=A \cos \theta+B \sin \theta$ may be a tangent to the conic $\frac{l}{r}=1+e \cos \theta$.
8. If α, β, γ are the roots of the equation $x^{3}-p x^{2}+q x+r=0$. Find the value of $\sum \frac{1}{\beta^{2} \gamma^{2}}$.
9. Form the equations whose roots are three times the root of the equation
i) $x^{3}-x^{2}+x+1=0$ and ii) $2 x^{3}-5 x^{2}+7=0$
10. The chord joining 2 points t_{1} and t_{2} to the parabola $y^{2}=4 a x$ pass through the focus. Prove that $\mathrm{t}_{1} \mathrm{t}_{2}=-1$.
11. Diminish by 3 , the roots of the equation $x^{5}-4 x^{4}+3 x^{2}-4 x+6=0$.
12. Find the condition for the lines $\mathrm{I}_{\mathrm{x}}+\mathrm{my}+\mathrm{n}=\mathrm{o}$ and $\mathrm{I}^{\prime} \mathrm{x}+\mathrm{m}^{\prime} \mathrm{y}+\mathrm{n}=\mathrm{o}$ to be conjugate with respect to parabola $y^{2}=4 a x$.

PART B

Answer any 5 (5 marks each)
13. Evaluate $(\nabla+\Delta)^{2}\left(x^{2}+x\right), h=1$.
14. Solve the equation $x^{4}-8 x^{3}+19 x^{2}-12 x+2=0$ by removing its second term.
15. Find the asymptotes of the hyperbola $3 x^{2}-5 x y-2 y^{2}+17 x+y+14=0$.
16. Use Lagrange's interpolation formula to find y when $\mathrm{x}=5$ from the following data.

$\mathrm{x}:$	0	1	3	8
$\mathrm{y}:$	1	3	13	123

17. Find the equation of asymptotes of the conic $\frac{l}{r}=1+e \cos \theta$.
18. The normals at 3 points $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ of the parabola $y^{2}=4 a x$ meet at (h, k). Prove that the centroid of the triangle PQR lies on the axis $\frac{2}{3}(h-2 a)$ from the vertex.
19. Solve $x^{5}+6 x^{4}+11 x^{3}+11 x^{2}+6 x+1=0$.
20. If PSP' is a focal chord of a conic, S is the focus and SL is the semi latus rectum, then show that $\frac{2}{S L}=\frac{1}{S P}+\frac{1}{S P^{\prime}}$

$$
(5 \times 5=25)
$$

PART C

Answer any 3 (10 marks each)
21. a) If the chord $P Q$ of a hyperbola cuts it's asymptotes at R and S, then prove that $P R=Q S$.
b) Show that the eccentric angles of ends of a pair of conjugate diameters differ by a right angle.
22. The following data gives the population of a town during last six censuses. Estimate using Newtons Interpolation formula,the increase in population duirng the period 1946 to 1948 Year : $\begin{array}{lllllll}1911 & 1921 & 1931 & 1941 & 1951 & 1961\end{array}$
Population i(n thousands): $\begin{array}{lllllll}12 & 15 & 20 & 27 & 39 & 52\end{array}$
23. a) Find the locus of foot of the perpendicular from a fixed point on a circle upon any tangent.
b) Find the equation of asymptotes of the conic $\frac{l}{r}=1+e \cos \theta$.
24. Solve by Cardans method $x^{3}-9 x+28=0$.

