END SEMESTER EXAMINATION: OCTOBER 2022

SEMESTER 1: INTEGRATED M.Sc. PROGRAMME COMPUTER SCIENCE AND DATA SCIENCE

COURSE: 21UP1CPCMT1: MATHEMATICS - 1

(For Regular – 2022 Admission and Improvement / Supplementary - 2021 Admission)

Time : Three Hours Max. Weightage: 30

PART A Answer any 8

 Determine the number of vertices and edges and find in-degree and out-degree of each vertex for the given directed multigraph

2. Find a spanning tree for the graph shown by removing edges in simple circuits.

3. Show that the following graphs are not isomorphic.

- 4. Explain the procedure of preorder traversal.
- 5. Which are the methods used for obtaining initial feasible solution in transportation problem.
- 6. Define Huffman coding algorithm.
- 7. Explain non-degenerate basic feasible solution.

- 8. What do you mean by an Influence graph?
- 9. What is mean by the term 'feasible region' in a LP problem?
- 10. What is an infeasible solution and how does it occur? How is this condition recognized in the graphical method?

 $(1 \times 8 = 8 \text{ Weight})$

PART B Answer any 6

- 11. Prove that an undirected graph is a tree if and only if there is a unique simple path between any two of its vertices.
- 12. Are the graphs G and H shown below are strongly connected? Are they weakly connected?

13. Which of these graphs are trees? If not give reason.

14. A company has three production facilities S_1 , S_2 and S_3 with production capacity of 7,9, and 18 units (in 100s) per week of a product, respectively. These units are to be shipped to four warehouses D_1 , D_2 , D_3 and D_4 with requirement of 5, 6, 7 and 14 units (100s) per week, respectively. The transportation cost (in rupees) per unit between factories to warehouses are given in the table below:

	D ₁	D ₂	D ₃	D ₄	Capacity	
S ₁	19	30	50	10	7	
S ₂	70	30	40	60	9	
S ₃	40	8	70	20	18	
Demand	5	8	7	14	34	

Formulate this transportation problem as an LP model to minimize the total cost.

- 15. Prove that A tree with n vertices has n-1 edges.
- 16. Determine whether the directed graph has an Euler circuit. Construct such a circuit when one exists. If no Euler circuit exists, determine whether the graph has an Euler path and construct such a path if one exists.

a)

17. Represent the given graph using an adjacency matrix.

a) a

18. Use graphical method to solve the following LP Problem.

minimize: $z = 4x_1 + 4x_2$

subject to: $x_1 + 2x_2 \le 10$

 $6x_1 + 6x_2 \le 36$ $x_1 \le 6$

 $x_1, x_2 \ge 0$

 $(2 \times 6 = 12 \text{ Weight})$

PART C Answer any 2

19. Use the Simplex method to solve the Following LP Problem,

Maximize $z = 3x_1 + 5x_2 + 4x_3$

subject to ; $2x_1 + 3x_2 \le 8$

$$2x_1 + 5x_3 \le 10$$

$$3x_1 + 2x_2 + 4x_3 \le 15$$

$$x_1, x_2, x_3 \ge 0$$

20. A department has five employees with five jobs to be performed. The time (in hours) each men will take to perform each job is given below;

Employees									
Jobs		1	2	3	4	5			
	Α	10	5	13	15	16			
	В	3	9	18	13	6			
	С	10	7	2	2	2			
	D	7	11	9	7	12			
	E	7	9	10	4	12			

How should the jobs be allocated, one per employee, so as to minimize the total man-hours?

21. Determine whether the given graph has a Hamilton circuit. If it does, find a circuit. If it does not, give an argument to show why no such circuit exists.

1)

2)

3)

4)

5)

22. Represent the compound propositions $\neg(p \land q) \leftrightarrow (\neg p \lor \neg q)$ and $(\neg p \land (q \leftrightarrow \neg p)) \lor \neg q$ using ordered rooted trees.

Also write these expressions in

- a) prefix notation.
- b) postfix notation.
- c) infix notation

 $(5 \times 2 = 10 \text{ Weight})$

