B. Sc. DEGREE END SEMESTER EXAMINATION : OCTOBER 2022

SEMESTER 1: MATHEMATICS

COURSE: 19U1CRMAT1: CALCULUS

(For Regular – 2022 Admission and Improvement / Supplementary - 2021/2020/2019 Admissions)

Time : Three Hours Max. Marks: 75

PART A Answer any 10 (2 marks each)

- 1. Find the area of the surface generated by revolving the curve $x=9y+1, 0\leq y\leq 2$ about y axis.
- 2. Find the area of the region enclosed by the curves $y=x^2, y=\sqrt{x}$, $x=rac{1}{4}$ and x=1.
- 3. Evaluate $\lim_{x \to +\infty} \frac{x^{-4/3}}{\sin\left(\frac{1}{x}\right)}$
- 4. Define a stationary point.
- 5. Evaluate $\lim_{x\to 0} \frac{1-\cos(x)}{x^2}$.
- 6. Prove that a general cubic polynomial $f(x)=ax^3+bx^2+cx+d$, $(a \neq 0)$ has exactly one inflection point.
- 7. Find the equation of the level curve that passes through the point (-1,1) Where f(x,y) = ye^x .
- 8. Find f_x and f_y for $f(x,y)=2x^2y^3+2y+4x$.
- 9. Find the area of the region bounded above by y=x+6 and below by $y=x^2$ and bounded on the sides by the lines x=0, x=2
- 10. Find $\lim_{x o rac{\pi}{4}}(1-\tan x)sec2x$.
- 11. Find all critical points of $f(x)=3x^{5/3}-15x^{2/3}$.
- 12. Describe the domain of $f\left(x,y,z\right) =e^{xyz}.$

 $(2 \times 10 = 20)$

PART B Answer any 5 (5 marks each)

- 13. Show that among all rectangles with perimeter p, the square has the maximum perimeter.
- 14. Verify whether Mean value theorem holds and if so find C where $f(x) = x \frac{1}{x}$; [3, 4]
- 15. Find the relative extrema of f(x) = x^4-12x^3 .
- 16. If $w=e^{xyz}, \ \ x=3u+v \ , \ \ y=3u-v \ , \ \ z=u^2v$, use chain rule to find $rac{\partial w}{\partial u}$ and $rac{\partial w}{\partial v}$.
- 17. Show that the function u(x,t)=sin(x-ct) is a solution of $\frac{\partial^2 u}{\partial t^2}$ = c^2 . $\frac{\partial^2 u}{\partial x^2}$.
- 18. Find the area of the surface generated by revolving the curve $x=y^3, 0 \leq y \leq 1$ about y-axis.

- 19. Use cylindrical shells to find the volume of the solid generated when the region enclosed by the given curves is revolved about x-axis $y^2=x,y=1,x=0$.
- 20. Verify that the hypothes's of the Rolle's theorem are satisfied on the given interval and find all values of c in that interval that satisfy the conclusion of the theorem $.f\left(x\right)=\cos x,\ \left[\frac{\pi}{2},\frac{3\pi}{2}\right].$

 $(5 \times 5 = 25)$

PART C Answer any 3 (10 marks each)

- 21. Determine the volume of the solid that results when the region enclosed by $x=y^2$ and x=y is revolved about the line y=1.
- 22. Evaluate $\lim_{x \to 0} \ \frac{1}{x^2} \frac{1}{\sin^2 x}$ and $\lim_{x \to 0+} \sin x \ \log x$.
- 23. Sketch the graph of curve $y = \frac{(x-1)(x-3)}{x^2}$.
- 24. Find the points on the sphere $x^2+y^2+z^2=36$ that is closest to and farthest from the point (1,2,2).

 $(10 \times 3 = 30)$