Name

## B. Sc. DEGREE END SEMESTER EXAMINATION - MARCH 2020 SEMESTER - 2: PHYSICS (CORE COURSE) <br> COURSE: 15U2CRPHY2: MECHANICS AND PROPERTIES OF MATTER

(Common for Improvement 2018/Supplementary 2018/2017/2016 /2015/2014 Admissions)

Time: Three Hours

Maximum Marks: 60

## PART A (Very short answer questions) <br> Answer all questions, Each question carries 1 Mark

1. Write the expression for the period of a simple harmonic motion.
2. What is the value of potential energy at the equilibrium position of a simple pendulum
3. What is centripetal force?
4. What is Poisson's ratio?
5. Define flexural rigidity.
6. What is the moment of inertia of disc about its diameter?
7. What is the expression for excess pressure inside a soap bubble?
8. Write the differential equation of a SHM.

## PART B (Short answer)

Answer any Six questions, Each question carries $\mathbf{2}$ Marks
9. State and prove the theorem of Perpendicular axes.
10. What is the moment of inertia of a solid cylinder about an axis passing through its centre and perpendicular to its length?
11. Obtain the relation between surface tension and surface energy.
12. Obtain an expression for bending moment.
13.Small liquid drops are spherical. Why?
14. Obtain an expression for the force between two plates separated by thin layer of liquid.
15. Distinguish between steady flow and turbulent flow.
16. Obtain the differential equation of a damped harmonic oscillator?

## PART C (Problem/Derivations) <br> Answer any Four questions, Each question carries 5 Marks

17. A solid sphere of mass 3 kg and diameter 0.2 m is suspended from a wire. The torque required to twist the wire is $5 \times 10^{-2} \mathrm{Nm} /$ radian. Calculate the period of oscillation.
18. A cantilever of length 0.6 m is depressed by 20 mm at the loaded end. What is the depression at a distance of 0.4 m from the fixed end?
19. Find the work done in spraying a drop of water of 2 mm diameter in to a million droplets all of the same size. Surface tension of water is $72 \times 10^{-3} \mathrm{Nm}^{-1}$ ?
20. Calculate the terminal velocity with which an air bubble of diameter 0.8 mm rises in a liquid of viscosity $0.25 \mathrm{Nsm}^{-2}$ and density $0.95 \times 10^{3} \mathrm{kgm}^{-3}$. Density of air is $1.3 \mathrm{Kgm}^{-3} \mathrm{~g}=9.8 \mathrm{~ms}^{-2}$ ?
21. A fly wheel is accelerated by a steady torque of 25 Nm so that it makes 3 revolutions in the first second of its motion. The mass of the flywheel is 15 kg . Calculate the radius of gyration of the flywheel.
22. A compound pendulum is formed by suspending a heavy ring from a point on its circumference. Calculate the period of oscillation if its radius is 2 m .

## PART D (Long answer questions)

Answer any Two question, Each question carries 10 Marks
23. Give the theory of Compound pendulum and explain how acceleration due to gravity is determined with it.
24. Describe an experiment to determine the moment of inertia of a flywheel.
25. Derive an expression for the depression of the midpoint of a beam loaded at the center.
26. Explain the theory of damped oscillator. Discuss under damped and over damped oscillations.
(10 $\times 2=20$ )

