M. Sc. DEGREE END SEMESTER EXAMINATION: MARCH 2023

SEMESTER 4: MATHEMATICS

COURSE: 21P4MATTEL20: THEORY OF WAVELETS

(For Regular - 2021 Admission)

Duration: Three Hours Max. Weights: 30

PART A Answer any 8 questions

Which of the following sequences is square summable? 1. (i) $(Z(n))_{n=1}^{\infty}$, where $z(n)=rac{1}{\sqrt{n}}$

(ii) $(w(n))_{n=1}^\infty$, where $w(n)=rac{1}{2}$

If $B=\{R_{2k}v\}_{k=0}^{M-1}\bigcup\{R_{2k}u\}_{k=0}^{M-1}$ is a first stage wavelet basis for $l^2(Z_N)$, then 2. (U, CO 1) represent the construction of $[z]_B$ for any $z \in l^2(Z_N)$ by a filter bank diagram.

Define the orthogonal direct sum of two subspaces U and V of an innerproduct 3. (U, CO 2)

Define the discrete Fourier transform $\wedge: l^2(Z_N) o l^2(Z_N)$. (An, CO 1) 4.

Suppose N is divisible by 2^p . Suppose $u_l,v_l\in l^2(Z(rac{N}{2}^{l-1})$ for $l=1,2,\ldots,p$. 5. Define $f_1=v_1,g_1=u_1$ and for $l=2,3,\ldots,p$ define $f_l=g_{l-1}*U^{l-1}(v_l)$, prove that $f_l=u_1*U(u_2)*U^2(u_3)*\ldots*U^{l-2}(u_{l-1})*U^{l-1}(v_l)$. (E, CO 2)

Define a complete orthonormal set in a Hilbert space. 6. (U, CO 3)

Define a homogeneous wavelet system for $l^2(Z)$. (An, CO 4) 7.

Suppose $z \in l^2(Z_N)$. Prove that \hat{z} is real if and only if $z(m) = \overline{z(N-m)}$ for 8. (U, CO 1)

Let $\{a_k\}_{k\in Z}$ and $\{b_k\}_{k\in Z}$ be orthonormal sets in a Hilbert space H. with $< a_j, b_k> = 0$ for $j,k\in Z$. Define $V=[\sum\limits_{k\in Z}z(k)a_k:z=(z(k))_{k\in Z}\in l^2(Z)]$ and $W=[\sum\limits_{k\in Z}z(k)b_k:z=(z(k))_{k\in Z}\in l^2(Z)]$. Then prove that $V\perp W$. 9. (An, CO 4)

If $\sum\limits_{n\in Z}w(n)$ converges absolutely, prove that $\sum\limits_{n=0}^{\infty}w(n)$ and $\sum\limits_{n=1}^{\infty}w(-n)$ converges (A, CO 3)absolutely. $(1 \times 8 = 8)$

PART B

Answer any 6 questions Weights: 2

Weight: 1

(An, CO 3)

Suppose N is divisible by 2^p . Suppose u, $\mathsf{v} \in l^2(Z_N)$ are such that the system matrix 11. A(n) of u and v is unitary for all n.

Define $u_1=u$ and $v_1=v$ and for $l=2,3,\ldots,p$ define $u_l(n)=\sum\limits_{k=0}^{2^{l-1}-1}u_1(n+rac{kN}{2^{l-1}})$ and $v_l(n)=\sum\limits_{k=0}^{2^{l-1}-1}v_1(n+rac{kN}{2^{l-1}}).$ Then prove that (An, CO 2)

 $u_1, v_1, u_2, v_2, \dots u_p, v_p$ is a p^{th} stage wavelet filter sequence.

Suppose $M \in N, N = 2M, z \in l^2(Z_N)$ and $w \in l^2(Z_M).$ Prove that 12. (U, CO 1) < D(z), w > = < z, U(w) >

Let $\hat{u}=(\sqrt{2},1,0,1)$ and $\check{v}=(0,1,\sqrt{2},-1)$ 13. (a) Find u and v (A, CO 1) (b) Construct an orthonormal basis for $l^2(Z_4)$ using u and v

Let $z=(2,5,-1,i)\in l^2(Z_4)$ 14. (a) Find U(z) (An, CO 1) (b) Find D(z)

- (c) Prove that $UoD(z)=rac{1}{2}(z+z^*)$ (d) Prove that DoU(z)=z Prove that $L^2[(-\pi,\pi)]$ is a normed space.
- 15. Prove that $L^2[(-\pi,\pi)]$ is a normed space. (A, CO 3)

 16. Derive a complete orthonormal set in $l^2(Z)$. (A, CO 3)
- 17. i) Define delta function $'\delta'$. (ii) Suppose $b\in l^1(Z)$ and define $T_b(z)=b*z$ for all $z\in l^2(Z)$. Then prove that $T_b: l^2(Z)\to l^2(Z)$ is a translation invariant linear transformation. (An, CO 4)
- 18. Suppose N is divisible by 2^l , x, y, $w\in l^2(Z_{N/2}^l)$ and $z\in l^2(Z_N)$. Then prove that $D^l(z)*w=D^l(z*U^l(w))$ and $U^l(x*y)=U^l(x)*U^l(y)$. (2 x 6 = 12)

PART C

Answer any 2 questions Weights: 5

(E, CO 2)

(U, CO 3)

- 19. Describe Daubechie's D_6 wavelet system on Z_N . 20. (i) For $k\in Z$, define the translation operator $R_k:l^2(Z)\to l^2(Z)$.
 - (ii) When we say a linear transformation $T:l^2(Z) \to l^2(Z)$ is translation invariant?.

(An, CO 4) (iii) Suppose $T:l^2(Z)\to l^2(Z)$ is a bounded translation invariant linear transformation. If we define $b\in l^2(Z)$ by $b=T(\delta)$, then prove that T(z)=b*z for all $z\in l^2(Z)$.

- 21. i) What are the elements of $L^2([-\pi,\pi))$?
 - ii) Define addition and scalar multiplication in $L^2([-\pi,\pi))$.
 - iii) Define inner product in $L^2([-\pi,\pi))$ and state the norm induced by the innerproduct.
 - iv) Using Cauchy-schwarz inequality in an innerproduct space and triangle inequality in a normed space deduce the following

 $\int\limits_{-\pi}^{\pi} |f(\theta)g(\theta)|d\theta \leq (\int\limits_{-\pi}^{\pi} |f(\theta)|^2 d\theta)^{1/2} (\int\limits_{-\pi}^{\pi} |g(\theta)|^2 d\theta)^{1/2} \quad \text{and} \quad (\int\limits_{-\pi}^{\pi} |f(\theta)+g(\theta)|^2 d\theta)^{1/2} \leq (\int\limits_{-\pi}^{\pi} |f(\theta)|^2 d\theta)^{1/2} + (\int\limits_{-\pi}^{\pi} |g(\theta)|^2 d\theta)^{1/2} \text{ for any} \quad f,g \in L^2([-\pi,\pi))$

22. (a) Let $w\in l^2(Z_N)$. Then prove that $\{R_kw\}_{k=0}^{N-1}$ is orthonormal basis for $l^2(Z_N)$ if and if $|\hat{w}(n)|=1$ for all $n\in Z_N$ (U, CO 1) (b) If $B=\{R_kw\}_{k=0}^{N-1}$ is an orthonormal basis for $l^2(Z_N)$. Prove that $[z]_B=z*\tilde{w}$.

b) If $B=\left\{R_k w
ight\}_{k=0}^{}$ is an orthonomal basis for $l^*(Z_N)$. Prove that $[z]_B=z*w$. (5 x **2 = 10**)

OBE: Questions to Course Outcome Mapping

со	Course Outcome Description	CL	Questions	Total Wt.
CO 1	Define first stage and pth stage wavelet basis for I 2[ZN], Fourier transform including discrete case ,complete orthonormal system , first stage wavelet system and homogeneous wavelet system for I2[Z]	U	2, 4, 8, 12, 13, 14, 22	14
CO 2	Explain the filter bank diagram and its use in the construction of the output of the analysis phase of the filter bank	U	3, 5, 11, 18, 19	11
CO 3	Apply theory of wavelets in the frequency analysis of a video or audio signal.	U	1, 6, 10, 15, 16, 21	12
CO 4	Develop wavelet bases for I 2 [ZN] and I2 [Z],both first stage and pth stage	U	7, 9, 17, 20	9

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;