\qquad

M. Sc. DEGREE END SEMESTER EXAMINATION : MARCH 2023
 SEMESTER 4 : MATHEMATICS
 COURSE : 21P4MATTEL20 : THEORY OF WAVELETS

(For Regular - 2021 Admission)
Duration : Three Hours
Max. Weights: 30

PART A

Answer any 8 questions

Weight: 1

1. Which of the following sequences is square summable?
(i) $(Z(n))_{n=1}^{\infty}$, where $z(n)=\frac{1}{\sqrt{n}}$
(An, CO 3)
(ii) $(w(n))_{n=1}^{\infty}$, where $w(n)=\frac{1}{n}$
2. If $B=\left\{R_{2 k} v\right\}_{k=0}^{M-1} \bigcup\left\{R_{2 k} u\right\}_{k=0}^{M-1}$ is a first stage wavelet basis for $l^{2}\left(Z_{N}\right)$, then represent the construction of $[z]_{B}$ for any $z \in l^{2}\left(Z_{N}\right)$ by a filter bank diagram.
3. Define the orthogonal direct sum of two subspaces U and V of an innerproduct space X .
4. Define the discrete Fourier transform $\wedge: l^{2}\left(Z_{N}\right) \rightarrow l^{2}\left(Z_{N}\right)$.
(An, CO 1)
5. Suppose N is divisible by 2^{p}. Suppose $u_{l}, v_{l} \in l^{2}\left(Z\left(\frac{N}{2}^{l-1}\right)\right.$ for $l=1,2, \ldots, p$.

Define $f_{1}=v_{1}, g_{1}=u_{1}$ and for $l=2,3, \ldots, p$ define $f_{l}=g_{l-1} * U^{l-1}\left(v_{l}\right)$, prove that $f_{l}=u_{1} * U\left(u_{2}\right) * U^{2}\left(u_{3}\right) * \ldots * U^{l-2}\left(u_{l-1}\right) * U^{l-1}\left(v_{l}\right)$.
6. Define a complete orthonormal set in a Hilbert space.
7. Define a homogeneous wavelet system for $l^{2}(Z)$.
8. Suppose $z \in l^{2}\left(Z_{N}\right)$. Prove that \hat{z} is real if and only if $z(m)=\overline{z(N-m)}$ for all m .
9. Let $\left\{a_{k}\right\}_{k \in Z}$ and $\left\{b_{k}\right\}_{k \in Z}$ be orthonormal sets in a Hilbert space H. with $<a_{j}, b_{k}>=0$ for $j, k \in Z$. Define $V=\left[\sum_{k \in Z} z(k) a_{k}: z=(z(k))_{k \in Z} \in l^{2}(Z)\right]$
and $W=\left[\sum_{k \in Z} z(k) b_{k}: z=(z(k))_{k \in Z} \in l^{2}(Z)\right]$. Then prove that $V \perp W$.
10. If $\sum_{n \in Z} w(n)$ converges absolutely, prove that $\sum_{n=0}^{\infty} w(n)$ and $\sum_{n=1}^{\infty} w(-n)$ converges absolutely.

PART B

Answer any 6 questions
Weights: 2
11. Suppose N is divisible by 2^{p}. Suppose $\mathrm{u}, \mathrm{v} \in l^{2}\left(Z_{N}\right)$ are such that the system matrix $A(n)$ of u and v is unitary for all n.
Define $u_{1}=u$ and $v_{1}=v$ and for $l=2,3, \ldots, p$ define
$u_{l}(n)=\sum_{k=0}^{2^{l-1}-1} u_{1}\left(n+\frac{k N}{2^{l-1}}\right)$ and $v_{l}(n)=\sum_{k=0}^{2^{l-1}-1} v_{1}\left(n+\frac{k N}{2^{l-1}}\right)$. Then prove that
$u_{1}, v_{1}, u_{2}, v_{2}, \ldots u_{p}, v_{p}$ is a $p^{t h}$ stage wavelet filter sequence.
12. \quad Suppose $M \in N, N=2 M, z \in l^{2}\left(Z_{N}\right)$ and $w \in l^{2}\left(Z_{M}\right)$. Prove that $<D(z), w>=<z, U(w)>$
13. Let $\hat{u}=(\sqrt{2}, 1,0,1)$ and $\check{v}=(0,1, \sqrt{2},-1)$
(a) Find u and v
(A, CO 1)
(b) Construct an orthonormal basis for $l^{2}\left(Z_{4}\right)$ using u and v
14. Let $z=(2,5,-1, i) \in l^{2}\left(Z_{4}\right)$
(a) Find $U(z)$
(An, CO 1)
(b) Find $D(z)$
(c) Prove that $\operatorname{UoD}(z)=\frac{1}{2}\left(z+z^{*}\right)$
(d) Prove that $\operatorname{DoU}(z)=z$
15. Prove that $L^{2}[(-\pi, \pi)]$ is a normed space.
($\mathrm{A}, \mathrm{CO}_{3}$)
16. Derive a complete orthonormal set in $l^{2}(Z)$.
17. i) Define delta function ${ }^{\prime} \delta^{\prime}$.
(ii)Suppose $b \in l^{1}(Z)$ and define $T_{b}(z)=b * z$ for all $z \in l^{2}(Z)$. Then prove that
(An, CO 4) $T_{b}: l^{2}(Z) \rightarrow l^{2}(Z)$ is a translation invariant linear transformation.
18. Suppose N is divisible by $2^{l}, \mathrm{x}, \mathrm{y}, w \in l^{2}\left(Z_{N / 2}^{l}\right)$ and $z \in l^{2}\left(Z_{N}\right)$. Then prove that $D^{l}(z) * w=D^{l}\left(z * U^{l}(w)\right)$ and $U^{l}(x * y)=U^{l}(x) * U^{l}(y)$.

PART C

Answer any 2 questions

Weights: 5
($\mathrm{E}, \mathrm{CO} 2$)
19. Describe Daubechie's D_{6} wavelet system on Z_{N}.
20. (i) For $k \in Z$, define the translation operator $R_{k}: l^{2}(Z) \rightarrow l^{2}(Z)$.
(ii) When we say a linear transformation $T: l^{2}(Z) \rightarrow l^{2}(Z)$ is translation invariant?.
(iii) Suppose $T: l^{2}(Z) \rightarrow l^{2}(Z)$ is a bounded translation invariant linear
(An, CO 4)
transformation. If we define $b \in l^{2}(Z)$ by $b=T(\delta)$, then prove that $T(z)=b * z$
for all $z \in l^{2}(Z)$.
21. i) What are the elements of $L^{2}([-\pi, \pi))$?
ii) Define addition and scalar multiplication in $L^{2}([-\pi, \pi))$.
iii) Define inner product in $L^{2}([-\pi, \pi))$ and state the norm induced by the innerproduct.
iv) Using Cauchy-schwarz inequality in an innerproduct space and triangle inequality in a normed space deduce the following
($\mathrm{U}, \mathrm{CO}_{3}$)
$\int_{-\pi}^{\pi}|f(\theta) g(\theta)| d \theta \leq\left(\int_{-\pi}^{\pi}|f(\theta)|^{2} d \theta\right)^{1 / 2}\left(\int_{-\pi}^{\pi}|g(\theta)|^{2} d \theta\right)^{1 / 2} \quad$ and
$\left(\int_{-\pi}^{\pi}|f(\theta)+g(\theta)|^{2} d \theta\right)^{1 / 2} \leq\left(\int_{-\pi}^{\pi}|f(\theta)|^{2} d \theta\right)^{1 / 2}+\left(\int_{-\pi}^{\pi}|g(\theta)|^{2} d \theta\right)^{1 / 2}$ for any
$f, g \in L^{2}([-\pi, \pi))$
22. (a) Let $w \in l^{2}\left(Z_{N}\right)$. Then prove that $\left\{R_{k} w\right\}_{k=0}^{N-1}$ is orthonormal basis for $l^{2}\left(Z_{N}\right)$ if and if $|\hat{w}(n)|=1$ for all $n \in Z_{N}$
(b) If $B=\left\{R_{k} w\right\}_{k=0}^{N-1}$ is an orthonomal basis for $l^{2}\left(Z_{N}\right)$. Prove that $[z]_{B}=z * \tilde{w}$.

OBE: Questions to Course Outcome Mapping

CO	Course Outcome Description	CL	Questions	Total Wt.
CO 1	Define first stage and pth stage wavelet basis for $12[$ ZN], Fourier transform including discrete case ,complete orthonormal system , first stage wavelet system and homogeneous wavelet system for l2[Z]	U	$\begin{aligned} & 2,4,8,12, \\ & 13,14,22 \end{aligned}$	14
CO 2	Explain the filter bank diagram and its use in the construction of the output of the analysis phase of the filter bank	U	$\begin{aligned} & 3,5,11,18 \\ & 19 \end{aligned}$	11
CO 3	Apply theory of wavelets in the frequency analysis of a video or audio signal.	U	$\begin{aligned} & 1,6,10,15 \\ & 16,21 \end{aligned}$	12
CO_{4}	Develop wavelet bases for I 2 [ZN] and $\mathrm{I} 2[\mathrm{Z}]$,both first stage and pth stage	U	7, 9, 17, 20	9

[^0]
[^0]: Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;

