Reg. No

M. Sc. DEGREE END SEMESTER EXAMINATION : MARCH 2023 SEMESTER 4 : MATHEMATICS

COURSE: 21P4MATTEL17: DIFFERENTIAL GEOMETRY

(For Regular - 2021 Admission)

Duration : Three Hours		Max. Weights: 30				
PART A						
	Answer any 8 questions	Weight: 1				
1.	Find the integral curve through $p=(x_1,x_2)=(1,1)$ of the vector field $\mathbb{X}(p)=(p,0,1).$	(A, CO 1)				
2.	Define a quadratic form associated with a linear operator ${\cal L}$ on a finite dimensional vector space with a dot product.	(U, CO 4)				
3.	Define covariant derivative of a parallel vector field.	(U, CO 2)				
4.	Find the velocity, the acceleration, and the speed of parametrized curve $lpha(t)=(\cos t,\sin t,2\cos t,2\sin t).$	(A, CO 2)				
5.	Sketch the vector field on $\mathbb{R}^2: \mathbb{X}(p)=(p,X(p))$ where $X(x_1,x_2)=(x_2,x_1).$	(A, CO 1)				
6.	Let $lpha:I o\mathbb{R}^2$ defined by $lpha(t)=(\gamma\cos t,\gamma\sin t).$ Find $l(lpha).$	(A, CO 3)				
7.	Define the divergence of a smooth vector field.	(U, CO 1)				
8.	Find the length of the given parametrized curve $lpha:I o R^3$ defined by $lpha(t)=\left(\sqrt{2}\cos 2t,\sin 2t,\sin 2t\right),I=[0,2\pi].$	(A, CO 3)				
9.	Find the normal curvature of the hyperboloid $-x_1^2+x_2^2+x_3^2=1$ in \mathbb{R}^3	,				
	oriented by the unit normal vector field $\mathbb{N}(p)=(p,-x_1/\ p\ ,x_2/\ p\ ,x_3/\ p\)$ at $p=(0,0,1)$ in the direction $\mathbf{v}=(1,0,0).$	(An CO 4)				
10.	Show that if $lpha:I o\mathbb{R}^{n+1}$ is a parametrized curve with constant speed then $\ddot{lpha}(t)\perp\dot{lpha}(t)$ for all $t\in I$.	(A, CO 2)				
		$(1 \times 8 = 8)$				
PART B						
	Answer any 6 questions	Weights: 2				
11.	If v_0 is an eigenvector of a self adjoint operator on a finite dimensional vector space V . Prove that $f(v)=L(v)\cdot v$ is stationary at v_0 .	(An, CO 4)				
12.	Let S denote the cylinder $x_1^2+x_2^2=r^2$ of radius $r>0$ in \mathbb{R}^3 . Show that $lpha$ is a geodesic of S if and only if $lpha$ is of the form $lpha(t)=(r\cos(at+b),r\sin(at+b),ct+d)$ for some $a,b,c,d\in\mathbb{R}$.	(A, CO 2)				
13.	Let $S=f^{-1}(c)$ be an n -surface in \mathbb{R}^{n+1} , where $f:U\to\mathbb{R}$ is such that $\nabla f(q)\neq 0$ for all $q\in S$, and let \mathbb{X} be a smooth vector field on U whose restriction to S is a tangent vector field on S . If $\alpha:I\to U$ is an integral curve of X such that $\alpha(t_0)\in S$ for some $t_0\in I$, then prove that $\alpha(t)\in S$ for all $t\in I$.					

14. Sketch the level sets $f^{-1}(c)$ for n=0,1,2, where $f(x_1,\ldots,x_{n+1})=x_1^2+x_2^2/4+\cdots+x_{n+1}^2/(n+1)^2$ and c=1

15. Prove that the local parametrization is unique upto a reparameterization. (A)

16. Compute $abla_v f$ where $f(x_1,x_2)=x_1^2-x_2^2$, $v=(1,1,\cos heta,\sin heta)$. (A, CO 3)

17. Find global parametrizations the plane curve $f^{-1}(c)$, oriented by $\nabla f/\|\nabla f\|$ where $f(x_1,x_2)=ax_1+bx_2,\quad (a,b)\neq (0,0)$. (A, CO 3)

18. Let S be an n-surface in \mathbb{R}^{n+1} and $p \in S$. Show that the subset of S consisting of all points $q \in S$ which can be joined to p by a continuous curve in S is a connected n-surface. (An, CO 4)

 $(2 \times 6 = 12)$

PART C

Answer any 2 questions Weights: 5

- 19. Let U be an open set in \mathbb{R}^{n+1} and let $f:U\to\mathbb{R}$ be smooth. Let $p\in U$ be a regular point of f, and let c=f(p). Prove that the set of all vectors tangent to $f^{-1}(c)$ at p is equal to $[\nabla f(p)]^{\perp}$.
- 20. Let S be an n-surface in \mathbb{R}^{n+1} , let $p\in S$, and let $v\in S_p$. Prove that there exists an open interval I containing 0 and a geodesic $\alpha:I\to S$ such that (i) $\alpha(0)=p$ and $\dot{\alpha}(0)=v$. (An, CO 2) (ii) If $\beta:\tilde{I}\to S$ is any other geodesic in S with $\beta(0)=p$ and $\dot{\beta}(0)=v$, then $\tilde{I}\subseteq I$ and $\beta(t)=\alpha(t)$ for all $t\in \tilde{I}$.
- Let η be the 1-form on $\mathbb{R}^2-\{0\}$ defined by $\eta=-rac{x_2}{x_1^2+x_2^2}dx_1+rac{x_1}{x_1^2+x_2^2}dx_2$. Prove that for $lpha:[a,b] o\mathbb{R}^2-\{0\}$, any closed piecewise smooth parametrized curve in $\mathbb{R}^2-\{0\}$, $\int\limits_{\Omega}\eta=2\pi k$ for some integer k.
- 22. (i) Find the Gaussian curvature of $\phi(t,\theta)=(\cos\theta,\sin\theta,t)$ (ii) Prove that on each compact oriented n-surface S in \mathbb{R}^{n+1} there exists a point p such that the second fundamental form at p is definite. (5 x 2 = 10)

OBE: Questions to Course Outcome Mapping

СО	Course Outcome Description	CL	Questions	Total Wt.
CO 1	Perceive the ideas of graphs and level sets, vector fields, the tangent space, surfaces, vector fields on surfaces, orientation.	U	1, 5, 7, 13, 14, 19	12
CO 2	Explain the fundamentals of the Gauss map, geodesics, and parallel transport.	Α	3, 4, 10, 12, 20	10
CO 3	Summarize the ideas of the Weingarten map, the curvature of plane curves, arc length, and line integrals.	An	6, 8, 16, 17, 21	11
CO 4	Estimate the curvature of surfaces	E	2, 9, 11, 18, 22	11

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;