\qquad

M. Sc DEGREE END SEMESTER EXAMINATION - OCTOBER 2022

SEMESTER 3 : MATHEMATICS

COURSE : 16P3MATT12 : ADVANCED FUNCTIONAL ANALYSIS
(For Supplementary - 2016/2017/2018/2019/2020 Admissions)
Time : Three Hours
Max. Marks: 75

PART A

Answer All (1.5 marks each)

1. Let $\left(f_{n}\right)$ be bounded linear functional on a Banach space X is weak* convergent. Prove that the sequence $\left(\left\|f_{n}\right\|\right)$ is bounded.
2. Show that $T: R^{2} \rightarrow R$ defined by $\left(\xi_{1}, \xi_{2}\right) \rightarrow\left(\xi_{1}\right)$ is open. Is the mapping $T: R^{2} \rightarrow R^{2}$ defined by $\left(\xi_{1}, \xi_{2}\right) \rightarrow\left(\xi_{1}, 0\right)$ an open mapping?. Justify.
3. Prove that boundedness does not imply closedness of a linear operator.
4. Define eigen values of a square matrix A. Also find the eigen values of

$$
A=\left[\begin{array}{ll}
5 & 4 \\
1 & 2
\end{array}\right]
$$

5. Let A be a complex Banach algebra with identity ' e ' and $x \in A$.

Then prove that $r_{\sigma}(x) \leq\|x\|$.
6. Let $T: X \rightarrow Y$ be a linear operator where X and Y are normed spaces. If X is finite dimensional then prove that T is compact.
7. Prove that the composite of two linear operators is compact if one is compact and the other is bounded.
8. Define a positive operator. If $T_{1} \leq T_{2}$ then prove that $T_{1}+T \leq T_{2}+T$, where T, T_{1}, T_{2} are bounded self adjoint linear operators on the same Hilbert space.
9. If T_{1} and T_{2} are two positive operators on a complex Hilbert space H, then prove that
(a) $T_{1}+T_{2} \geq 0$ and
(b) $T_{1} \leq T_{2} \Rightarrow T_{2}-T_{1} \geq 0$.
10. Prove that all the eigen values (if they exist) of a bounded self adjoint linear operator $T: H \rightarrow H$ on a complex Hilbert space H are real.
$(1.5 \times 10=15)$

PART B

Answer any 4 (5 marks each)
11. (a) Define contraction on a metric space X.
(b) Prove that a contraction on a metric space X is continuous.
12. Let $T: X \rightarrow Y$ be a bijective bounded linear operator from a Banach space X to a Banach space Y. Show that there exists two positive numbers a and b such that

$$
a\|x\| \leq\|T x\| \leq b\|x\| \text { for all } x \in X
$$

13. State and prove the representation theorem of the resolvent operator $R_{\lambda}(T)$ where $T \in B(X, X), X$ is a complex Banach space.
14. Let A be a complex Banach algebra with identify ${ }^{~} e$ '
(a) When we say an $x \in A$ is invertible ?
(b) Prove that the set ${ }^{`} G$ ' of all invertible elements of A is a multiplicative group.
(c) Prove that ' G ' is an open subset of A.
15. Let X and Y be two normed spaces.
(a) Prove that $c(X, Y)$ is a subspace of $B(X, Y)$.
(b) Prove that $c(X, Y)$ is a closed subspace of $B(X, Y)$, if Y is a Banach space.
(c) Prove that $c(X, Y)$ is a Banach space, if Y is a Banach space.
16. Prove that the positive square root of a bounded positive self adjoint linear operator on a complex Hilbert space H is unique.

PART C

Answer any 4 (10 marks each)

17.1. (a) Prove that uniform operator convergence of a sequence $\left(T_{n}\right)$ of bounded linear operators implies strong operator convergence of $\left(T_{n}\right)$ with the same limit, but the converse is not true.
(b) Prove that strong operator convergence of a sequence $\left(T_{n}\right)$ in $B(X, Y)$ implies weak operator convergence of $\left(T_{n}\right)$ with the same limit but the converse is not true.

OR
2. (a) Suppose $T: \mathcal{D}(T) \rightarrow Y$ is linear where $\mathcal{D}(T) \subset X$ and X and Y are normed spaces.
(i) Define graph $\mathcal{G}(T)$ of T
(ii) Prove that $\mathcal{G}(T)$ is a subspace of $X \times Y$
(iii) Prove that $X \times Y$ is a normed space under the norm defined by $\|(x, y)\|=\|x\|+\|y\|$
(iv) If X and Y are Banach spaces, prove that $X \times Y$ is also a Banach space and $\mathcal{G}(T)$ is a closed subspace of $X \times Y$
(b) Give an example of a closed linear operator which is not bounded and a bounded linear operator which is not closed.
18.1. Let A be a complex Banach algebra with identity ' e '. Then for any $x \in A$ prove that $\sigma(x)$ is compact. Also define the spectral radius $r_{\sigma}(x)$ of x and prove that $r_{\sigma}(x) \leq\|x\|$
(b) Let A be a complex Banach algebra with identity ' e '. Prove that for any $x \in A$, $\sigma(x) \neq \phi$.

OR

2. (a) Let A be a complex Banach algebra with identity ${ }^{e} e$ '. If $x \in A$ is such that $\|x\|<1$, then prove that $(e-x)$ is invertible and

$$
(e-x)^{-1}=\sum_{j=0}^{\infty} x^{j} \quad\left(x^{0}=e\right)
$$

Hence show that $\left\|(e-x)^{-1}-e-x\right\| \leq \frac{\|x\|^{2}}{1-\|x\|}$
(b) If $\|x-e\|<1$, show that x is invertible and $x^{-1}=e+\sum_{j=1}^{\infty}(e-x)^{j}$
(c) If $x \in A$ is invertible and $y \in A$ is such that $\left\|y x^{-1}\right\|<1$, show that $x-y$ is invertible and $(x-y)^{-1}=\sum_{j=0}^{\infty} x^{-1}\left(y x^{-1}\right)^{j}$.
19.1. (a) Let X and Y be normed spaces and $T: X \rightarrow Y$ a linear operator. Then:
(i) If T is bounded and $\operatorname{dim} T(X)<\infty$, then prove that T is compact.
(ii) If $\operatorname{dim} X<\infty$, then prove that T is compact.
(b) Let $T: l^{2} \rightarrow l^{2}$ be defined by $T x=y$, when $x=\left(\xi_{j}\right) \in l^{2}$ and $y=\left(n_{j}\right), n_{j}=\frac{\xi_{j}}{j}$ for $j=1,2,3, \ldots$ Then prove that T is compact linear.

OR

2. Let $T: X \rightarrow X$ be a compact linear operator and let $\lambda \neq 0$ (X is a normed space). Then prove that there exists a smallest integer $n=r$ such that,

$$
N\left(T_{\lambda}^{r}\right)=N\left(T_{\lambda}^{r+1}\right)=\ldots \text { and } T_{\lambda}^{r}(X)=T_{\lambda}^{r+1}(X)=\ldots
$$

and if $r>0$, the following inclusions are proper,

$$
N\left(T_{\lambda}^{0}\right) \subset N\left(T_{\lambda}\right) \subset N\left(T_{\lambda}^{2}\right) \subset \ldots \subset N\left(T_{\lambda}^{r}\right)
$$

and

$$
T_{\lambda}^{0}(X) \supset T_{\lambda}(X) \supset \ldots \supset T_{\lambda}^{r}(X)
$$

20.1. Suppose P_{1} and P_{2} are two projections on a Hilbert space H
(a) Prove that $P=P_{2}-P_{1}$ is a projection on H if and only if $Y_{1} \subset Y_{2}$ where $Y_{j}=P_{j}(H)$, $j=1,2$
(b) If $P=P_{2}-P_{1}$ is a projection, then prove that P projects H onto Y, where Y is the orthogonal complement of Y_{1} in Y_{2}.

OR

2. Let P_{1} and P_{2} be two projections on a Hilbert space H
(a) Prove that $P=P_{1}+P_{2}$ is a projection on H if and only if $Y_{1}=P_{1}(H)$ and $Y_{2}=P_{2}(H)$ are orthogonal
(b) If $P=P_{1}+P_{2}$ is a projection, prove that P projects H onto $Y=Y_{1} \oplus Y_{2}$.
($10 \times 4=40$)
