\qquad Name

M. Sc. DEGREE END SEMESTER EXAMINATION : OCTOBER 2022
 SEMESTER 3 : MATHEMATICS
 COURSE : 21P3MATT15 : MULTIVARIATE CALCULUS
 (For Regular - 2021 Admission)

Duration : Three Hours
Max. Weights: 30
PART A

Answer any 8 questions

1. Explain the term Jacobian matrix
2. Let f be a function with values in \mathbb{R}^{m} which is differentiable at a point c in \mathbb{R}^{n} with total derivative $f^{\prime}(c)$. Show that $\left\|f^{\prime}(c)(v)\right\| \leq M\|v\|$, where $M=\sum_{k=1}^{m}\left\|\nabla f_{k}(c)\right\|$.

Weight: 1
(A, CO 2)
(A, CO 1)
($\mathrm{U}, \mathrm{CO} 4$)
(U, CO 4)
(A, CO 1)
($\mathrm{U}, \mathrm{CO} 3$)
(An, CO 3)
($1 \times 8=8$)
PART B
Answer any 6 questions
Weights: 2
(A, CO 2)
(An, CO 3)
14. If f satisfies the hypotheses of the Fourier integral theorem show that
(a) If f is even then
$\frac{f(x+)+f(x-)}{2}=\frac{2}{\pi} \lim _{\alpha \rightarrow \infty} \int_{0}^{\alpha} \cos v x\left[\int_{0}^{\infty} f(u) \cos v u d u\right] d v$.
(b) If f is odd then $\frac{f(x+)+f(x-)}{2}=\frac{2}{\pi} \lim _{\alpha \rightarrow \infty} \int_{0}^{\alpha} \sin v x\left[\int_{0}^{\infty} f(u) \sin v u d u\right] d v$.
15. Suppose T is a C^{\prime} mapping of an open set $E \subset R^{n}$ into an open set $V \subset R^{m}$, S is a C^{\prime} - mapping of V into an open set $W \subset R^{p}$, and ω is a k - form in W, so that ω_{S} is a k-form in V and both $\left(\omega_{S}\right)_{T}$ prove that $\omega_{S T}$ are k-forms in E, where $S T$ is defined by $(S T)(X)=S(T(X))$. Then $\left(\omega_{S}\right)_{T}=\omega_{S T}$
16. Let D be the 3 - cell defined by $0 \leq r \leq 1,0 \leq \theta \leq \pi, 0 \leq \phi \leq 2 \pi$ and $\Phi(r, \theta, \phi)=(x, y, z)$ where $x=r \sin \theta \cos \phi, y=r \sin \theta \sin \phi$ and
$z=r \cos \theta$. Show that $\int_{\Phi} d x \wedge d y \wedge d z=\frac{4 \pi}{3}$.
17. Show that convolution may not be defined if f and g are Lebesque integrable
(A, CO 1)
18. For some integer $n \geq 1$, let f have a continuous $n^{\text {th }}$ derivative in the open interval (a, b). Suppose also that for some interior point c in (a, b), we have, $f^{\prime}(c)=f^{\prime \prime}(c)=\cdots=f^{(n-1)}(c)=0$, but $f^{n}(c) \neq 0$. Prove that for n even, f has a local minimum at c if $f^{n}(c)>0$, and a local maximum at c if
$f^{n}(c)<0$. If n is odd, there is neither a local maximum nor a local minimum at c.
(A, CO 3)
($2 \times 6=12$)
PART C
Answer any 2 questions
Weights: 5
19. Assume that g is differentiable at a, with total derivative $g^{\prime}(a)$. Let $b=g(a)$ and assume that f is differentiable at b, with total derivative $f^{\prime}(b)$. Then prove that the composite function $h=f o g$ is differentiable at a, and the ($\mathrm{A}, \mathrm{CO} 2$) total derivative $h^{\prime}(a)$ is given by $h^{\prime}(a)=f^{\prime}(b) o g^{\prime}(a)$, the composition of the linear functions $f^{\prime}(b)$ and $g^{\prime}(a)$.
20. Suppose ω is k-form in an open set $E \subset R^{n}, \phi$ is a surface in E, with parameter domain $D \subset R^{k}$ and Δ is the k-surface in R^{k} with parameter domain D, defined by $\Delta(u)=u(u \in D)$ then show that $\int_{\phi} \omega=\int_{\Delta} \omega_{\phi}$.
21. State and prove Fourier Integral theorem
22. (a) State and prove second derivative test for extrema.
(b)Find and classify the extremum values of the function
$f(x, y)=x^{2}+y^{2}+x+y+x y$.
($5 \times 2=10$)

OBE: Questions to Course Outcome Mapping

CO	Course Outcome Description	CL	Questions	Total Wt.
CO 1	Explain Weirstras theorem, otherforms of Fourierseries, the Fourier integral theorem, the exponential form of the Fourier integral theorem, integral transforms and convolutions, the convolution theorem for Fourier transforms.	A	$\begin{aligned} & 3,6,7,14 \\ & 17,21 \end{aligned}$	12
CO 2	Analyze Multivariable Differential Calculus The directional derivative, directional derivatives and continuity, the total derivative, the total derivative expressed in terms of partial derivatives, An application of the complex- valued functions, the matrix of a linear function, the Jacobian matrix, the chain rate matrix form of the chain rule.	A	$\begin{aligned} & 1,2,11 \\ & 12,19 \end{aligned}$	11
CO 3	Interpret Implicit functions and extremum problems, the mean value theorem for differentiable functions, a a sufficient condition for differentiability.	An	$\begin{aligned} & 8,10,13, \\ & 18 \end{aligned}$	6
CO 4	Explain the Integration of Differential Forms, primitive mappings, partitions of unity, change of variables, differential forms, and Stoke's theorem.	An	$\begin{aligned} & 4,5,15 \\ & 16,20 \end{aligned}$	11

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;

