Reg. No

M. Sc. DEGREE END SEMESTER EXAMINATION : OCTOBER 2022

SEMESTER 3 : MATHEMATICS

COURSE : 21P3MATT15 : MULTIVARIATE CALCULUS

(For Regular - 2021 Admission)

PART A

Duration : Three Hours

Max. Weights: 30

	Answer any 8 questions	Weight: 1			
1.	Explain the term Jacobian matrix	(A, CO 2)			
2.	Let f be a function with values in \mathbb{R}^m which is differentiable at a point c in \mathbb{R}^n with total derivative $f'(c)$. Show that $ f'(c)(v) \leq M v $, where $M = \sum\limits_{k=1}^m abla f_k(c) .$	(A, CO 2)			
3.	State Fourier Integral theorem	(A, CO 1)			
4.	Explain k - surface	(U, CO 4)			
5.	Define basic k-forms	(U, CO 4)			
6.	Prove that $f st g = g st f.$	(A, CO 1)			
7.	State the exponential form of Fourier Integral Theorem	(A, CO 1)			
8.	State the second derivative test for extrema	(U, CO 3)			
9.	Show that $f_\omega=xdy+ydx$ then $\int_\gamma\omega=0~$ for every 1- surface closed curve $\gamma.$	(A)			
10.	Let $f:\mathbb{R} o\mathbb{R}^2$ be a function given by $f(t)=(\cos t,\sin t).$ Show that the ordinary Mean Value theorem does not hold in $[0,2\pi].$	(An, CO 3)			
		(1 x 8 = 8)			
PART B Answer any 6 questions Weights: 2					
11.	Find the directional derivative of the function $f=x^2-y^2+2z^2$ at the point $P(1,2,3)$ in the direction of the line PQ where Q is the point $(5,0,4)$	(A, CO 2)			
12.	If f is differentiable at c , then prove that f is continuous at c .	(A, CO 2)			
13.	Find the points on the surface $z^2=xy+1$ nearest to the origin	(An, CO 3)			
14.	If f satisfies the hypotheses of the Fourier integral theorem show that (a) If f is even then f(r+)+f(r-) = 0				
	$rac{f(x+)+f(x-)}{2}=rac{2}{\pi}\lim_{lpha ightarrow\infty}\int_{0}^{lpha}\cos vx\left[\int_{0}^{\infty}f(u)\cos vu\ du ight]dv.$	(A, CO 1)			
	(b) If f is odd then $rac{f(x+)+f(x-)}{2}=rac{2}{\pi}\lim_{lpha o\infty}\int_0^lpha\sin vx\left[\int_0^\infty f(u)\sin vu\ du ight]dv.$				
15.	Suppose T is a C' mapping of an open set $E \subset R^n$ into an open set $V \subset R^m$, S is a C' -mapping of V into an open set $W \subset R^p$, and ω is a k -form in W , so that ω_S is a k -form in V and both $(\omega_S)_T$ prove that ω_{ST} are k -forms in E , where ST is defined by $(ST)(X) = S(T(X))$. Then $(\omega_S)_T = \omega_{ST}$	(An, CO 4)			
16.	Let D be the 3- cell defined by $0\leq r\leq 1, 0\leq heta\leq \pi, 0\leq \phi\leq 2\pi$ and $\Phi(r, heta,\phi)=(x,y,z)$ where $x=r\sin heta\cos\phi, y=r\sin heta\sin\phi$ and	(An, CO 4)			

Name

17. 18.	$z = r \cos \theta$. Show that $\int_{\Phi} dx \wedge dy \wedge dz = \frac{4\pi}{3}$. Show that convolution may not be defined if f and g are Lebesque integrable For some integer $n \ge 1$, let f have a continuous n^{th} derivative in the open interval (a, b) . Suppose also that for some interior point c in (a, b) , we have, $f'(c) = f''(c) = \cdots = f^{(n-1)}(c) = 0$, but $f^n(c) \ne 0$. Prove that for n even, f has a local minimum at c if $f^n(c) > 0$, and a local maximum at c if $f^n(c) < 0$. If n is odd, there is neither a local maximum nor a local minimum	(A, CO 1) (A, CO 3)
	at c .	
		(2 x 6 = 12)
	PART C	
	Answer any 2 questions	Weights: 5
19.	Assume that g is differentiable at a , with total derivative $g'(a)$. Let $b = g(a)$ and assume that f is differentiable at b , with total derivative $f'(b)$. Then prove that the composite function $h = fog$ is differentiable at a , and the total derivative $h'(a)$ is given by $h'(a) = f'(b)og'(a)$, the composition of the linear functions $f'(b)$ and $g'(a)$.	(A, CO 2)
20.	Suppose ω is k -form in an open set $E\subset R^n,\phi$ is a surface in E , with parameter domain $D\subset R^k$ and Δ is the k - surface in R^k with parameter domain D , defined by $\Delta(u)=u(u\in D)$ then show that $\int_\phi\omega=\int_\Delta\omega_\phi.$	(An, CO 4)
21.	State and prove Fourier Integral theorem	(A, CO 1)
22.	(a) State and prove second derivative test for extrema.	
	(b)Find and classify the extremum values of the function	(A)
	$f(x, y) = x^2 + y^2 + x + y + xy.$	1
		(5 x 2 = 10)

OBE: Questions to Course Outcome Mapping

СО	Course Outcome Description	CL	Questions	Total Wt.
CO 1	Explain Weirstras theorem, otherforms of Fourierseries, the Fourier integral theorem, the exponential form of the Fourier integral theorem, integral transforms and convolutions, the convolution theorem for Fourier transforms.	A	3, 6, 7, 14, 17, 21	12
CO 2	Analyze Multivariable Differential Calculus The directional derivative, directional derivatives and continuity, the total derivative, the total derivative expressed in terms of partial derivatives, An application of the complex- valued functions, the matrix of a linear function, the Jacobian matrix, the chain rate matrix form of the chain rule.	A	1, 2, 11, 12, 19	11
CO 3	Interpret Implicit functions and extremum problems, the mean value theorem for differentiable functions, a a sufficient condition for differentiability.	An	8, 10, 13, 18	6
CO 4	Explain the Integration of Differential Forms, primitive mappings, partitions of unity, change of variables, differential forms, and Stoke's theorem.	An	4, 5, 15, 16, 20	11

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;