M. Sc. DEGREE END SEMESTER EXAMINATION : OCTOBER 2022 SEMESTER 3 : CHEMISTRY / PHARMACEUTICAL CHEMISTRY

COURSE: 21P3CHET10 / 21P3CPHT10: ORGANIC SYNTHESES

(For Regular - 2021 Admission)

Duration : Three Hours Max. Weights: 30

PART A Answer any 8 questions

Weight: 1

1. How can you bring about the following reaction?

$$H_3C$$
— C — H — H_3C — C — CH_2 — C

2. Give the synthetic equivalents for the following synthons.

3. Predict the product of the following reaction. Justify your answer.

- 4. Explain the role of trialkylsilyl derivative in Peterson Olefination reaction. ()
- 5. What is Baker's yeast? Give one synthetic application. (U, CO 1)
- 6. What is Birch Reduction ? (U, CO 1)
- 7. Predict the product A & B and justify your answer.

- 8. Explain Volhardt cyclization method (U)
- 9. Write the product

$$(Cr, CO 2)$$

11. Complete the following reaction with mechanism?

12. The major product formed in the following reaction is

b)
$$OCH_3$$
 (E, CO 4) OCH_3 OCH_3

13. Write a note on Pauson-Khand reaction. (U, CO 3)

14. Apply retrosynthetic analysis and devise a synthetic route for d-luciferin. (R, CO 5)

15. Write the intermediates, the product and explain the mechanism of the following reaction?

$$Ar-I+ H_2C \nearrow CN \xrightarrow{Pd^o} ?$$
(An, CO 2)

16. Give the products & write the mechanism

17. Show all the steps involved in the synthesis of dipeptide, Gly-Ala. (A, CO 4) Discuss the structure and synthetic uses of selectrides and 18. (U, CO 1) sodiumcyanoborohydride. $(2 \times 6 = 12)$ PART C **Answer any 2 questions** Weights: 5 19. Write briefly on the oxidising agents (U, CO 1) a) Ag_2CO_3 b) RuO_4 c)OsO₄ Write the reagents, product and explain mechanism the following reaction? 20. $Cu_2Cl_2(Cat)$ (A, CO 2) R ——— H NH₃(aq),EtOH Write short notes on i) Nazarov cyclization ii) Bergman cyclization iii) Pauson-21. (A) Khand reaction and iv) Robinson annulation 22. Discuss the structure, shape and applications of calixarenes, cryptands and (U, CO 4) cyclodextrins. $(5 \times 2 = 10)$

OBE: Questions to Course Outcome Mapping

СО	Course Outcome Description	CL	Questions	Total Wt.
CO 1	Describe the applications of oxidation and reduction techniques in organic syntheses.	Α	5, 6, 16, 18, 19	11
CO 2	Illustrate modern synthetic methods and applications of reagents.	U	9, 11, 15, 20	10
CO 3	Explain different methods for the construction of carbocyclic and heterocyclic ring systems.	U	13	2
CO 4	Understand the principles and applications of protecting groups in chemistry.	U	3, 7, 10, 12, 17, 22	12
CO 5	Apply retrosynthetic analysis to design the synthesis of a target molecule.	U	14	2

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;