Reg. No

Name

M. Sc DEGREE END SEMESTER EXAMINATION - MARCH 2020

SEMESTER 2 : PHYSICS

COURSE : 16P2PHYT05 : MATHEMATICAL METHODS IN PHYSICS- II

(For Regular - 2019 Admission & Supplementary 2018/2017/2016 Admissions)

Time : Three Hours

Max. Marks: 75

Section A Answer All the Following (1 mark each)

- 1. The value of the integral $I=\int_0^{2\pi} rac{d heta}{(5+4\cos heta)}$ is (a) $8\pi/7$ (b) $10\pi/27$ (c) $8\pi/25$ (d) $10\pi/49$
- 3. The Fourier transform converts a set of time domain data vectors into a set of domain vectors.

(a) space (b) amplitude (c) frequency (d) complex

- 4. The Fourier transform of which of the following functions does not exist? (a) $e^{-|x|}$ (b) xe^{-x^2} (c) e^{x^2} (d) e^{-x^2}
- 5. The one dimensional wave equation is (a) $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ (b) $\frac{\partial^2 u}{\partial t^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial x^2}$ (c) $\frac{\partial^2 u}{\partial t^2} + c^2 \frac{\partial^2 u}{\partial x^2} = 0$ (d) $\frac{\partial^2 u}{\partial t^2} + \frac{1}{c^2} \frac{\partial^2 u}{\partial x^2} = 0$

 $(1 \times 5 = 5)$

Section B Answer any 7 (2 marks each)

- 6. Find the point (x, y) at which the function $f(z) = |z|^2$ is analytic.
- 7. Show that $f(z) = z^2$ satisfies Cauchy Reimann equations.
- 8. Calculate the number of classes in a discrete abelian group of order n.
- 9. Explain conjugate elements of groups.
- 10. Describe how Earth's nutation can be explained on the basis of transforms.
- 11. Find the inverse Laplace transform of $\frac{s+2}{s^2-4s+13}$
- 12. Differentiate between Fourier series and Fourier transform.
- 13. State two properties of one dimensional Green's function.
- 14. Why Green's function is said to be symmetric about its two variables x and t.
- 15. Explain the physical meaning of Green's function.

(2 x 7 = 14)

Section C Answer any 4 (5 marks each)

- 16. Derive the conditions for a complex function to be analytic.
- 17. Show that SU(2) and SU(3) groups are homomorphic.
- 18. Show that the Fourier transform of a Gaussian function is another Gaussian.
- 19. Using Laplace transform discuss LCR circuit
- 20. Find the Green's function for the differential equation $\frac{d^2y}{dx^2} = f(x)$, subject to the boundary conditions y(0) = 0 = y(a).
- 21. State and explain any five different types of partial differential equations that occur in Physics and the phenomena to which they are applied.

(5 x 4 = 20)

Section D Answer any 3 (12 marks each)

22.1. Show that $\int_0^\infty \frac{dx}{(x^2+1)(x^2+9)} = \frac{\pi}{24}$.

OR

- 2. Derive Cauchy's integral formula.
- 23.1. Explain the applications of group theory in particle physics.

OR

- 2. Prove that any finite group of order n is isomorphic to a permutation group of 'n' symbols.
- 24.1. Obtain the momentum representation of hydrogen atom in the ground state. **OR**
 - 2. Find the solution of Laplace's equation in spherical polar coordinates.

(12 x 3 = 36)