Name

M. Sc. DEGREE END SEMESTER EXAMINATION : OCTOBER 2022 SEMESTER 3 : MATHEMATICS

COURSE : 21P3MATT13 : ADVANCED TOPOLOGY

(For Regular - 2021 Admission)

Duration : Three Hours

Reg. No

	PARTA	
	Answer any 8 questions	Weight: 1
1.	If a space X is Hausdorff prove that limits of all nets in it are unique.	()
2.	Prove that the evaluation function of a family of functions $\{f_i\}$ is continuous if each f_i is continuous.	()
3.	Define base and sub-base of a filter on a set $X.$	()
4.	State Tietze characterization of normality.	()
5.	Let S be a sub-base for a topological space X . Prove that if X is completely regular, then for each $V\in S$ and for each $x\in V$, there exist a continuous function $f:X o [0,1]$ such that $f(x)=0$ and $f(y)=1$ for all $y ot\in V$.	()
6.	State Urysohn's Lemma.	(An)
7.	Let $X^+=XU\{\infty\}$ be the one point compactification of the space $X.$ Prove that if $\{\infty\}$ is open in X^+ , then X is compact.	()
8.	Prove that a first countable, countably compact space is sequentially compact.	(An)
9.	Define a filter associated with a net S in $X.$	()
10.	If a space is embeddable in the Hilbert cube, prove that it is second countable and $T_{ m 3}.$	()
		(1 x 8 = 8)
	PART B	Waighta 2
	Answer any 6 questions	Weights: 2
11.	Prove that in a second countable space, compactness, countable compactness and sequential compactness are all equivalent to each other and hence these three forms of compactness are equivalent in a metric space.	()
12.	Let $f_1, f_2, f_3 : \mathbb{R} \to \mathbb{R}$ be defined by $f_1(x) = \cos x, f_2(x) = \sin x,$ $f_3(x) = x$ for $x \in \mathbb{R}$. Describe the evaluation maps of the families $\{f_1, f_2\}; \{f_1, f_3\}$ and $\{f_1, f_2, f_3\}$. Which of these families distinguish points?	()
13.	If a topological space is Tychonoff, prove that it is embeddable into a cube.	()
14.	Let A be a closed subset of a normal space X and suppose $f: A o [-1,1]$ is continuous. Then prove that there exists a continuous function $F: X o [-1,1]$ such that $F(x) = f(x) \ \forall \ x \in A$.	(U)
15.	Prove that a space is compact iff every ultra filter in it is convergent.	()

Max. Weights: 30

Prove that the net associated with an ultra filter is a universal net.	()
State Urysohn's characterization of normality and using it prove that a connected, T_4 space with at least two points must be uncountable.	()
Prove that the Alexandroff compactification of a non-empty, connected space is connected iff that space is not compact.	() (2 x 6 = 12)
PART C	
Answer any 2 questions	Weights: 5
State and prove Urysohn Embedding Theorem.	()
State and prove two characterizations of compact spaces.	()
Prove that the one-point compactification of a space is Hausdorff iff the space is locally compact and Hausdorff.	()
If the product space is non-empty, prove that each co-ordinate space is embeddable in it and hence prove that if a topological product is T_0, T_1, T_2 or regular, then each co-ordinate space has the corresponding property.	() (5 x 2 = 10)
	 State Urysohn's characterization of normality and using it prove that a connected, T₄ space with at least two points must be uncountable. Prove that the Alexandroff compactification of a non-empty, connected space is connected iff that space is not compact. PART C Answer any 2 questions State and prove Urysohn Embedding Theorem. State and prove two characterizations of compact spaces. Prove that the one-point compactification of a space is Hausdorff iff the space is locally compact and Hausdorff. If the product space is non-empty, prove that each co-ordinate space is embeddable in it and hence prove that if a topological product is T₀, T₁, T₂

OBE: Questions to Course Outcome Mapping

СО	Course Outcome Description	CL	Questions	Total Wt.			
Comitivo	Compiling Lovel (CL): Cr. CREATE, E. EVALUATE, An ANALYZE, A ARRIVELL UNDERSTAND, D. REMEMBER,						

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;