\qquad

M. Sc DEGREE END SEMESTER EXAMINATION : OCTOBER 2022
 SEMESTER 3 : MATHEMATICS

COURSE : 21P3MATT11 : PARTIAL DIFFERENTIAL EQUATIONS

(For Regular - 2021 Admission)
Duration : Three Hours

PART A

Answer any 8 questions
Weight: 1

1. Find the complete integral of $p^{2}=q z$.
2. Eliminate the parameters a and b from the equation $z^{2}\left(1+a^{3}\right)=8\left(x_{1}+a x_{2}+b\right)^{3}$ to find the corresponding pde.
3. Explain the method of seperation of variables.
4. Find the complete integral of $p+q=p q$.
5. Solve $\frac{\partial^{4} z}{\partial x^{4}}+\frac{\partial^{4} z}{\partial y^{4}}=\frac{2 \partial^{4} z}{\partial x^{2} \partial y^{2}}$
6. Form pde by eliminating arbitrary function from
$F\left(x_{1} x_{2}+z^{2}, x_{1}+x_{2}+z\right)=0$.
7. Define linear and semi linear pde.
8. Prove that $F\left(D, D^{\prime}\right) e^{a x+b y}=F(a, b) e^{a x+b y}$
9. Show that the pdes $z=p x_{1}+q x_{2}$ and $f\left(x_{1}, x_{2}, z, p, q\right)=0$ are compatible if the latter is homogeneous in x_{1}, x_{2}, z.
10. Classify the pde as elliptic, hyperbolic or parabolic $z_{x x}+z_{y y}=0$.

PART B

Answer any 6 questions
Weights: 2
11. Solve $z\left(x_{1} p-x_{2} q\right)=x_{2}^{2}-x_{1}^{2}$.
12. Solve $x_{1}\left(x_{2}-z\right) p+x_{2}\left(z-x_{1}\right) q=z\left(x_{1}-x_{2}\right)$.
13. Find the complete integral of $\left(x_{1}^{2}-x_{2}^{2}\right) p q-x_{1} x_{2}\left(p^{2}-q^{2}\right)-1=0$.
14. Solve $\left(D^{2}-2 D D^{\prime}-15 D^{\prime 2}\right) z=12 x y$.
15. Solve $(q+1) s=(p+1) t$ using Monge's method.
16. Solve $\left(D^{2}-D^{\prime 2}\right) z=x-y$.
17. Find the complete integral of
a) $p^{2}+q^{2}=x_{1}+x_{2}$
b) $z-p^{2}+q^{2}=0$.
18. By seperating the variables, show that the equation $z_{x x}=\frac{1}{k} z_{t}$ has solution of the form $z(x, t)=\sum_{0}^{\infty} c_{n} \cos \left(n x+\epsilon_{n}\right) e^{-n^{2} k t}$.

PART C

Answer any 2 questions
Weights: 5
19. Prove that a necessary and sufficient condition for a Pfaffian differential equation $X . d r=0$ to be integrable is that $X . c u r l X=0$.
20. Find a complete integral of $\left(p^{2}+q^{2}\right) x_{1}=p z$ and deduce the solution which passes through $x_{1}=0, z^{2}=4 x_{2}$.
21. Reduce to canonical form and solve the pde $r+2 s+t=0$.
22. Explain in detail about Neumann problem for a rectangle.

OBE: Questions to Course Outcome Mapping
CO Course Outcome Description CL Questions Total Wt.

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;

