MSc DEGREE END SEMESTER EXAMINATION - MARCH 2023 SEMESTER 2 : MATHEMATICS

COURSE: 16P2MATT10; REAL ANALYSIS

(For Supplementary 2020/2019/2018/2017/2016 Admissions)

Time: Three Hours Max. Marks: 75

PART A Answer all (1.5 marks each)

- 1. Prove that $\int_{-a}^{b}fdlpha\leq \overline{\int_{-a}^{-b}fdlpha}.$
- 2. Let f and g be two functions of bounded variation on [a,b]. Prove that fg is of bounded variation on [a,b].
- 3. Discuss the uniform convergence of $\{f_n\}$, where $f_n(x)=x^n; \ x\in$ [0,1].
- 4. If $f_1, f_2 \in \mathscr{R}(\alpha)$ on [a,b], then prove that $f_1 + f_2 \in \mathscr{R}(\alpha)$ on [a,b].
- 5. Define Uniform closure. Prove that a sequence $\{f_n\}$ converges to f with respect to the metric of $\mathscr{C}(X)$ if and only if $f_n \longrightarrow f$ uniformly on X.
- 6. If f is continuous on [a,b], then prove that $f \in \mathscr{R}(\alpha)$.
- 7. Prove that $\lim_{x\to 0} (1+x)^{1/x} = e$.
- 8. Distinguish between pointwise and uniform convergence of a sequence of functions.
- Does there exist a function which is neither of bounded variation nor Riemann Integrable.
 Justify.
- 10. Let $\{a_{ij}\}, i=1,2,3,\ldots; j=1,2,3,\ldots$ be a double sequence. If $\sum_{j=1}^\infty |a_{ij}|=b_i, i=1,2,3,\ldots$ and $\sum b_i$ converges, prove that $\sum_{i=1}^\infty \sum_{j=1}^\infty a_{ij}=\sum_{i=1}^\infty \sum_{i=1}^\infty a_{ij}$ (1.5 x 10 = 15)

PART B Answer any 4 (5 marks each)

- 11. Suppose $\{f_n\}$ is a sequence of functions defined on E and there exist sequences of real numbers $\{a_n\}$ and $\{x_n\} \in E$ such that $|f_n(x_n) f(x_n)| > a_n, \ \forall n$. Then prove that f_n does not converge uniformly to f, if $a_n \nrightarrow 0$.
- 12. State and prove the fundamental theorem of calculus.
- 13. Prove that $f\in \mathscr{R}(\alpha)$ on [a,b] iff for every $\epsilon>0$, there exists a partition P such that $U(P,f,\alpha)-L(P,f,\alpha)<\epsilon$.
- 14. Find the total variation of the function $f(x)=\sin 2x$ over the interval $[0,2\pi].$
- 15. If $E(z) = \sum_{n=0}^{\infty} rac{z^n}{n!}$, prove that $E(x) = e^x \,\, orall x \in \mathbb{R}$
- 16. Let $\{f_n\}$ be a sequence of continuous functions which converges uniformly to a function f on a set E. Prove that $\lim_{n\to\infty}f_n(x_n)=f(x)$ for every sequence of points $x_n\in E$ such that $x_n\to x$ and $x\in E$.

PART C Answer any 4 (10 marks each)

- 17.1 a. Let f be a function of bounded variation on [a,b]. If $c \in [a,b]$, prove that f is a function of bounded variation on [a,c] and [c,b].
 - b. Find the total variation of the function $f(x) = |x^2 4|$ over [-4,4].

OR

- a) Define the total variation of a function of bounded variation. Prove that the total variation is zero iff f is constant.
 - b) State and prove the additive property of total variation of a function of bounded variation.
- Let $f(x)=egin{cases} 1 & ext{if } x\in C \\ 0 & ext{if } x
 otin C ext{, for all } x\in [0,1], ext{ where } C ext{ is the Cantor set. Prove that } f\in \mathscr{R} ext{ on [0,1]}. \end{cases}$

OR

- 2. 1. Prove that if $f \in \mathscr{R}(lpha), \int\limits_a^b f dlpha = \int\limits_a^c f dlpha + \int\limits_c^b f dlpha$ for a < c < b.
 - 2. Evaluate $\int\limits_{1}^{10}fdlpha$ where f(x)=[logx] and lpha is the identity function.
- 19.1 If $\{f_n\}$ and $\{g_n\}$ converge uniformly on a set E, Prove that $\{f_n+g_n\}$ converges uniformly on E. Construct sequences $\{f_n\}$, $\{g_n\}$ which converge uniformly on some set E, but such that $\{f_ng_n\}$ does not converge uniformly on E.

OR

- 2. Prove or disprove: uniform limit of a sequence of differentiable function is differentiable. State a sufficient condition for the uniform limit of a sequence of functions being differentiable
- Suppose $\sum_{n=0}^\infty c_n x^n$ converges for |x| < R, and define $f(x) = \sum_{n=0}^\infty c_n x^n$ (|x| < R), then prove that $\sum_{n=0}^\infty c_n x^n$ converges uniformly on $[-R+\epsilon,R-\epsilon]$, no matter which $\epsilon>0$ is chosen and the function f is continuous and differentiable in (-R,R) with

 $f'(x)=\sum_{n=0}^{\infty}nc_nx^{n-1}$. (

OR

2. Introduce trigonometric functions using exponential series and hence derive any two properties of them. $(10 \times 4 = 40)$